1、第三章 连杆机构设计和分析,3.1 内容提要及基本概念3.2 本章重点、难点3.3 典型例题精解,3.1 内容提要及基本概念 3.1.1 内容提要 平面连杆机构又称为平面低副机构,其各运动副都为低副,相邻构件之间的接触面为平面或圆柱面,加工方便,易达到高精度,并能承受较大载荷及形成几何封闭等优点,因此获得广泛应用。本章的主要目的是在掌握基本概念和基本理论的基础上,能根据给定的运动要求及辅助条件、动力条件,确定平面连杆机构的形式和各构件的尺寸参数,并能进行运动和力分析。 平面四杆机构的特点、基本型式及其演化形式 平面四杆机构曲柄存在的条件、急回特性、压力角、 传动角、 行程速度比系数、极位夹角、
2、死点位置本章内容包括 平面四杆机构设计的基本问题、按简单运动条件设计 平面四杆机构的一些基本方法 平面连杆机构运动分析的目的和方法,包括瞬心法、相 对运动图解法、解析法 平面连杆机构力分析的目的和方法,3.1.2 基本概念复习,2 )连杆机构分类平面连杆机构、空间连杆机构3 )平面连杆机构 组成平面连杆机构的构件在同一平面或相互平行的平面上运动,运动副全部都是平面低副,分平面四杆机构和平面多杆机构。,4 )平面四杆机构的基本类型铰链四杆机构,运动副全是转动副,如图所示。,1)连杆机构 由低副(如转动副、移动副、球面副、圆柱副、螺旋副等)将若干构件连接而成。,曲柄作整周定轴回转的构件;,连杆作平
3、面运动的构件;,连架杆与机架相连的构件;,摇杆作定轴摆动的构件;,周转副能作360相对回转的运动副;,摆转副只能作有限角度摆动的运动副。,1.平面四杆机构的特点和形式,5)铰链四杆机构的分类曲柄摇杆机构 两连架杆中,一个为曲柄,而另一个为摇杆。,双曲柄机构 两连架杆均为曲柄。,雷达天线俯仰机构曲柄摇杆机构,惯性筛机构 双曲柄机构,作者:潘存云教授,实例: 火车轮,双曲柄机构的特例: 平行四边形机构。,特征:两连架杆等长且平行, 连杆作平动,摄影平台,天平,播种机料斗机构,作者:潘存云教授,作者:潘存云教授,反平行四边形机构。,双摇杆机构 两连架杆均为摇杆。,作者:潘存云教授,作者:潘存云教授,
4、等腰梯形机构汽车转向机构,6)平面四杆机构的演变,作者:潘存云教授,偏心曲柄滑块机构,对心曲柄滑块机构,曲柄摇杆机构,曲柄滑块机构,双滑块机构,正弦机构,摇杆变为滑块,滑槽弧半径为摇杆长度时,滑槽弧半径为无穷大时,滑道与曲柄铰链共线,摇杆变为滑块,滑槽弧半径为连杆长度时,滑槽弧半径为无穷大时,改变构件的形状和运动尺寸。,改变运动副的尺寸。,选不同的构件为机架。,偏心轮机构,转动副半径大于曲柄长度,2.平面四杆机构的基本知识,作:潘存云教授,平面四杆机构具有整转副可能存在曲柄。,b(d a)+ c,则由BCD可得:,则由B”C”D可得:,a+d b + c,c(d a)+ b,AB为最短杆, a
5、+b c + d,1)平面四杆机构有曲柄的条件,设ad,同理有: da, db, dc,AD为最短杆,将以上三式两两相加得: a b, ac, ad,连架杆或机架之一为最短杆。,可知:当满足杆长条件时,其最短杆参与构成的转动副都是整转副。,曲柄存在的条件:,最长杆与最短杆的长度之和其他两杆长度之和,称为杆长条件。,此时,铰链A为整转副。,若取BC为机架,则结论相同,可知铰链B也是整转副。,铰链四杆机构类型的判断: 第一种情况:若最短杆最长杆其他两杆之和若选最短杆的相邻做机架曲柄摇杆机构(上图)。若选最短杆做机架双曲柄机构(中图)。若选最短杆的对面的杆做机架双摇杆机构(下图)。第二种情况:若最短
6、杆最长杆其他两杆之和 双摇杆机构(无论以何杆做机架),A,B,C,D,A,B,C,D,A,B,C,D,2)极位夹角和急回特性 极位夹角曲柄与连杆两次共线时,两曲柄位置所夹的锐角是极位夹角。,当曲柄以逆时针转过180+时,摇杆从C1D位置摆到C2D。所花时间为t1 , 平均速度为v1,那么有:,当曲柄以继续转过180-时,摇杆从C2D位置摆到C1D,所花时间为t2 ,平均速度为v2 ,那么有:,显然:t1 t2 v2 v1,摇杆的这种特性称为急回运动。,急回特性。,称K为行程速比系数。,且越大,K值越大,急回性质越明显。,只要 0 , 就有K 1,设计新机械时,往往先给定K值,于是:,行程速比系
7、数K。,曲柄滑块机构的急回特性,导杆机构的急回特性,当BCD90时, BCD,3)压力角和传动角,压力角:从动件驱动力F与力作用点绝对速度之间所夹锐角。,设计时要求: min50,min出现的位置:,当BCD90时,,180- BCD,切向分力 F = Fcos,法向分力 F ”= Fcos, F,对传动有利。,=Fsin,此位置一定是:主动件与机架共线两处之一。,传动角:压力角的余角,可用的大小来表示机构传动力性能的好坏。,当BCD最小或最大时,都有可能出现min,由余弦定律有(如右上图) : B1C1Darccosb2+c2-(d-a)2/2bc,B2C2Darccosb2+c2-(d+a
8、)2/2bc,若B1C1D90,则,若B2C2D90, 则,1B1C1D,2180-B2C2D,minB1C1D, 180-B2C2Dmin,作者:潘存云教授,4)机构的死点位置,摇杆为主动件,且连杆与曲柄两次共线时,有:0(如右中图),此时机构不能运动,称此位置为“死点”。,也可以利用死点进行工作,如飞机起落架。,作者:潘存云教授,作者:潘存云教授,5)铰链四杆机构的运动连续性,指连杆机构能否连续实现给定的各个位置。,可行域:摇杆的运动范围,如图阴影部分。,不可行域:摇杆不能达到的区域,如图非阴影部分。,错位不连续:设计时不能要求从一个可行域跳过不可行域进入另一个可行域。,称此为错位不连续。
9、,错序不连续,设计连杆机构时,应满足运动连续性条件。,错序不连续: 不能按B1 C1、 B3 C3、 B2 C2顺序运动。,3.平面连杆机构运动设计的基本问题1)平面连杆机构的功能刚体导引功能:机构引导刚体如连杆通过一系列给定位置。具有这种功能的连杆机构就是刚体导引机构。函数生成功能:能精确地或近似地实现所要求的输出构件相对输入构件的某种函数关系。具有这种功能的机构就是函数生成机构。轨迹生成功能:指连杆上某点通过某一预先给定轨迹的功能,具有这种功能的机构就是轨迹机构。具有特殊或综合功能的机构:具有特殊或综合功能的要求。2)设计方法:实验法、几何图解法、解析法,4. 用解析法设计四杆机构,思路:
10、首先建立包含机构的各尺度参数和运动变量在内的解析关系式,然后根据已知的运动变量求解所需的机构尺度参数。,1)按给定的运动规律设计四杆机构,给定连架杆对应位置:构件3和构件1满足以下位置关系:,3if (1i ) i =1, 2, 3 , , n设计此四杆机构(求各构件长度)。,建立坐标系,设构件长度为:a 、b、c、d,在x、y轴上投影可得:,机构尺寸比例放大时,不影响各构件相对转角.,a cos1i + bcos2i =c cos3i + d,a sin1i + b sin2i = c sin3i,令: a/a=1 b/a= l c/a= m d/a= n,代入移项得: lcos2 i= n
11、+mcos(3i+0 )cos(1i+0 ) lsin2 i= msin(3i+0 )sin(1i+0 ),上式简化为:cos(1i+0 )P0cos(3i+0 ) + P1 cos(3i+01i0 )+ P2,式中包含有p0、p1、p2、0、0五个待定参数,故四杆机构最多可按两连架杆的五组对应未知精确求解。,当i5时,一般不能求得精确解,只能用最小二乘法近似求解。,当i a =( A C1A C2)/ 2,A C1= a+b,作者:潘存云教授,作C1 C2 H。,作射线C1O 使C2C1O=90,以O为圆心、C1O为半径作圆。,以A为圆心、A C1为半径作弧交于E,得:,作射线C2O使C1C
12、2 O=90。,作偏距线e,交圆弧于A,即为所求。,l1 =EC2/ 2,l2 = A C2EC2/ 2,作者:潘存云教授,作者:潘存云教授,计算180(K-1)/(K+1);,任选D作mDn,,取A点,使得AD=d, 则: a=dsin(/2),作角分线;,5. 多杆机构的应用可精确实现连架杆5个以上的对应位置;可改变从动件的运动规律;可扩大机构从动件的行程;可实现机构从动件的间歇运动;可取得有利的传动角;可获得较大的机构利益。,6. 平面连杆机构的运动分析1)机构运动分析的目的,研究内容:位置分析、速度分析和加速度分析。,确定机构的位置(位形),绘制机构位置图。,确定构件的运动空间,判断是
13、否发生干涉。,确定构件(活塞)行程, 找出上下极限位置。,确定点的轨迹(连杆曲线)。,通过分析,了解从动件的速度变化规律是否满足 工作要求。,为加速度分析作准备。,加速度分析的目的是为确定惯性力作准备。,2)方法 图解法。 解析法。 实验法。,作者:潘存云教授,作者:潘存云教授,c,b,A,C,B,速度多边形的性质:,a. 连接p点和任一点的向量代表该 点在机构图中同名点的绝对速 度,指向为p该点。,b.连接任意两点的向量代表该两点 在机构图中同名点的相对速度, 指向与速度的下标相反。如bc代 表vCB而不是vBC ,常用相对速 度来求构件的角速度。,c.因为abcABC,称abc为ABC的速
14、 度影像,两者相似且字母顺序一致。 前者沿方向转过90。称pabc为 PABC的速度影像。,特别注意:影像与构件相似而不是与机构位形相似!,d.极点p代表机构中所有速度为零的点的影像。,D,速度多边形的用途: 由两点的速度可求任意点的速度。,例如,求BC中间任意点E的速度VE时,bc上中间任意点e为E点的影像,连接pe就是vE。,E,作者:潘存云教授,b,作者:潘存云教授,加速度关系。,求得:aBapb,选加速度比例尺a (m/s2)/mm,在任意点p作图使aAapa (如右中图),b”,设已知角速度,A点加速度和aB的方向,atBAab”b,方向: b” b,aBAab a,方向: a b,
15、大小: 方向:,aA,aB,a,p,作者:潘存云教授,aCaA + anCA+ atCA aB + anCB+ atCB (如右下图),作图求解得:,atCAac”c,atCBac” c,方向:c” c,方向:c” c,方向:p c,? ?, ? ? ,c”,aCapc,同理:,作者:潘存云教授,作者:潘存云教授,角加速度:atBA/ lAB,得:b a/ lABbc/ lBC a c/ lCA,称pabc为加速度多边形(或加速度图解), p为极点,所以 abcABC,加速度多边形的特性:,a.连接p点和任一点的向量代表该点在机构图中同名点的绝对加速度,指向为p 该点。,aBA (atBA)2
16、+ (anBA)2,aCA (atCA)2+ (anCA)2,aCB (atCB)2+ (anCB)2,方向:CCW,a b”b /l AB,c”,lCA 2 + 4,lCB 2 + 4,lBA 2 + 4,ab a,a ac,a bc,作者:潘存云教授,作者:潘存云教授,b.连接任意两点的向量代表该两点在机构图中同名点 的相对加速度,指向与加速度的下标相反。如ab代 表aBA而不是aAB , bc aCB , ca aAC 。,c.因为abcABC,称abc为ABC的 加速度影像,称pabc为PABC的加速 度影像,两者相似且字母顺序一致。,d.极点p代表机构中所有加速度为零的点 的影像。,
17、特别注意:影像与构件相似而不是与机构位形相似!,用途:根据相似性原理由两点的加速度求任意点的加速度。,例如:求BC中点E的加速度aE,c”,c,常用相对切向加速度来求构件的角加速度。,e,8. 用解析法作机构的运动分析,图解法的缺点:分析结果精度低。,作图繁琐、费时,不适用于一个运动周期的分析。,解析法:复数矢量法、矩阵法、杆组法等。,不便于把机构分析与综合问题联系起来。,思路:由机构的几何条件,建立机构的位置方程,然后就位置方程对时间求一阶导数,得速度方程,求二阶导数得到机构的加速度方程。,9.平面机构的运动分析实例,已知: 图示四杆机构的各构件尺寸和1 ,求2、3、2、3、2、3 。,作者
18、:潘存云教授,1)位置分析将各构件用杆矢量表示,则有:,化成直角坐标形式有:,l2 cos2l3 cos3+ l4 cos4l1 cos1,l2 sin2l3 sin3+ l4 sin4l1 sin1,3 = 1 l1 sin (1 2 ) / l3 sin (3 2 ),2 =1 l1 sin (1 3 ) / l2sin (23 ),3)加速度分析,速度方程:,将上式对时间求导得:,3 =12 l1 cos (1 - 2 ) + 22 l2 -32 l3 cos (3 - 2 ) / l3 sin (3 2 ),2 =12 l1 cos (1 - 3 ) + 32 l3 -22 l2 co
19、s (2 - 3 ) / l2 sin (2 3 ),10. 速度瞬心及其在机构速度分析中的应用,绝对瞬心重合点绝对速度为零。,相对瞬心重合点绝对速度不为零。,两个作平面运动构件上速度相同的一对重合点,在某一瞬时两构件相对于该点作相对转动 ,该点称瞬时速度中心。,1)速度瞬心的定义,2)瞬心数目,因为每两个构件就有一个瞬心 所以根据排列组合有,若机构中有n个构件,则,Nn(n-1)/2,3)机构瞬心位置的确定,直接观察法 。适用于求通过运动副直接相连的两构件瞬心位置。,三心定律。,定义:三个彼此作平面运动的构件共有三个瞬心,且它们位于同一条直线上。此法特别适用于两构件不直接相连的场合。,举例:
20、求曲柄滑块机构的速度瞬心。,解:瞬心数为:,a.直接观察求瞬心求P12、 P23、 P34、P14。,b.三心定律求瞬心P24、P13。,Nn(n-1)/26 n=4,4)速度瞬心在机构速度分析中的应用,a.求线速度,已知凸轮转速1,求推杆的速度。,解:直接观察求瞬心P13、 P23 。,求瞬心P12的速度 。,v2v P12l(P13P12)1,长度P13P12直接从图上量取。,根据三心定律和公法线 nn求瞬心的位置P12 。,b.求角速度,解:瞬心数为6个,直接观察能求出4个,余下的2个用三心定律求出。,求瞬心P24的速度 。,vP24l(P24P14)4,4 2 (P24P12)/ P2
21、4P14,已知铰链机构构件2的转速2,求构件4的角速度4 。,vP24l(P24P12)2,方向: CW, 与2相同。,c.求传动比,定义:两构件角速度之比为传动比。,3 /2 P12P23 / P13P23,推广到一般: i /j P1jPij / P1iPij,结论:两构件的角速度之比等于绝对瞬心至相对瞬心的距离之反比。,角速度的方向为:相对瞬心位于两绝对瞬心的同一侧时,两构件转向相同。,相对瞬心位于两绝对瞬心之间时,两构件转向相反。,用瞬心法解题步骤:,绘制机构运动简图。,求瞬心的位置。,求出相对瞬心的速度。,瞬心法的优缺点:,适合于求简单机构的速度,机构复杂时因 瞬心数急剧增加而求解过
22、程复杂。,有时瞬心点落在纸面外。,仅适于求速度v,应用有一定局限性。,求构件绝对速度v或角速度。,11.平面机构力分析,确定运动副中的反力为进一步研究构件强度、运动副中的摩擦、磨损、机械效率、机械动力性能等作准备。,1)力分析的任务和目的,确定机械平衡力(或力偶)目的是已知生产负荷确定原动机的最小功率;或由原动机的功率来确定所能克服的最大生产阻力。,反力运动副元素接触处的正压力与摩擦力的合力,平衡力机械在已知外力作用下,为了使机械按给定的运动规律运动所必须添加的未知外力。,2)力分析的方法,图解法解析法,机械力分析的理论依据 :,静力分析适用于低速机械,惯性力可忽略不计;,动态静力分析适用于高
23、速重型机械,惯性力往往 比外力要大,不能忽略。,3)平面连杆机构动态静力分析的步骤 对平面连杆机构进行运动分析,求出有关速度、角速度、加速度及角加速度等运动参数。将机构按力分析起始件及杆组进行分解。从远离力分析起始件开始,逐个对杆组进行动态静力分析,求运动副反力。对力起始件进行力分析,求出平衡力和有关约束反力。,3.2 本章重点、难点,3.2.1 本章重点1.平面铰链四杆机构的演化。2.曲柄存在条件、压力角、传动角、死点、行程系数。3.平面四杆机构综合设计的一些基本方法。4.用瞬心法求机构的速度。5.用矢量方程图解法求机构的速度和加速度。3.2.2 本章难点1.有关曲柄存在条件的杆长关系式的全
24、面分析。2.平面多杆机构的传动角和平面四杆机构最小传动角的确定。3.平面铰链四杆机构运动连续性的判断。4.图解法和解析法对平面四杆机构进行设计问题。5.矢量方程图解法中科氏加速度的求法。,3.3 典型例题精解,3.3.1 例题精解例1 图示铰链四杆机构,已知 lBC =500mm,lCD= 350mm,lAD=300mm,AD为机架。 若此机构为曲柄摇杆机构,且AB为曲柄,求lAB的最大值; 若此机构为双曲柄机构,求lAB的范围; 若此机构为双摇杆机构,求lAB的范围。,解 : 因AB为曲柄,显然AB应为最短,且四个构件的长度应满足杆长之和条件,即 lAB+lBClCD+lAD 或 lABlC
25、D+lADlBC=350+300500=150因此此机构为曲柄摇杆机构时 的最大值为150mm。, 因AD为机架,若此机构为双曲柄机构,则AD应为最短构件,而AB的长度有两种可能,或为最长,或为介于最长与最短之间。两种情况分别讨论如下:当AB为最长时,根据杆长之和条件,有 lAD+lABlBC+lCD 或 lABlBC+lCDlAD=(500+350300) mm=550 mm当AB介于最长与最短之间时,有 300mmlCD+lAD 或 lABlCD+lADlBC=350+300500=150,当AB介于最长与最短之间时,有 lAD+lBClAB+lCD或 lABlBC+lCD 或 lABlB
26、C+lCDlAD=500+350300=550另外,应保证四个构件的长度能组成四杆机构,即有 lABlAD+lBC+lCD=(300+500+350)mm=1150mm 综合以上情况,得此机构为双摇杆机构时lAB的取值范围为 150mmlAB450mm 或 550mmlAB1150mm.,例2 如图所示铰链四杆机构,已知各构件的长度分别为: a=lAB=30mm , b=lBC=55mm , c=lCD=40mm,d=lAD=50mmAD为机架,AB为原动件。 试说明此机构为曲柄摇杆机构,其中A、B为整转副,C、D为摆动副; 建立极位夹角与各构件长度之间的关系式,并求出值; 建立机构最小传动角
27、 min 与各构件长度之间的关系式,并求出 min 值。,C,B,A,D, 因 a2+d2=3400b2+c2=4625 mm, 所以为I型曲柄摇杆机构。如图所示, I型曲柄摇杆机构的 出现 在曲柄与机架重叠共线位置,即,解 因 lAB+lBC=85mmlCD+lAD=90mm , 所以AB所连两个转动副为整转副,C、D为摆动副,为曲柄摇杆机构。,min,例3 图示偏置曲柄滑块机构。 已知:lAB=100mm, e=20mm, 1 =100rad/s (曲柄1作等速转动);当=45时滑块3的移动速度为vC=8m/s。试求连杆2的长度lBC。,解 : 利用速度瞬心P13并采用解析法进行求解。,因
28、,所以,例4 设计一曲柄摇杆机构ABCD。已知摇杆CD的长度lCD=290mm, 摇杆两极位置间的夹角=32,行程速度变化系数K=1.25,连杆BC的长度lBC=260mm。 试求曲柄AB的长度lAB和机架AD的长度lAD。,解 :如图所示,按I型曲柄摇杆机构进行设计。,用几何法设计:,得C1O和C2O的交点O。以O为圆心和OC1为半径作圆,则该圆上除劣弧C1C2以外的各点对弦C1C2所张的圆周角均为。下面分析确定A点位置的方法。,作 C1C2O=C2C1O=90o, =180(K1)/(K+1)=20,假设A点位置已知,延长C2A并取AE=AC1。因lAC1=ba, lAC2=b+a, 所以
29、lEC2=2b,C1EC2= /2。因此,E点既在以C2为圆心、2b为半径的圆上,同时又在经过C1C2且圆周角为/2的圆上,即E点应为此两圆的交点。E点位置确定后,则E、C2两点连线与圆周角为 的圆的交点即为A 点位置。,当A点位置确定后,即得机架AD的长度d。 同时,由lAC1=ba, lAC2=b+a ,可求得连杆BC的长度b和曲柄AB的长度。,任选转动副D的位置,并按CD之长和摆角作摇杆的两个极限位置DC1和DC2。,解析法:,因 B1C1=B2C2, RC1=RC2, B1C1R=B2C2R 所以 RB1C1RB2C2, RB1=RB2, B1RB2=C1RC2=C1AC2= 因 AB
30、1=AB2 所以 AB1RAB2R, ARB1=ARB2= /2, B1AR=B2AR=90 /2,即AB1R和AB2R为全等的两个直角三角形。基于上述分析的设计计算过程如下:,试具体说明上述设计方法是否正确,并加以证明。,例5 对于已知摇杆CD长度lCD和摆角、行程速度比变化系数K以及曲柄AB长度lAB的曲柄摇杆机构设计问题,现采用图(a)所示的几何设计方案确定机架AD的长度lAD和连杆BC的长度lBC,具体步骤如下:由 =180(K1)/(K+1) 求出极位夹角。 任选转动副D的位置,并按CD之长和摆角作摇杆的两个极限位置DC1和DC2。 作C1C2O= C2C1O=90 , 得C1O和C
31、2O的交点O。 以O为圆心和OC1为半径作圆l。 延长直线OD与圆l交于下方的R点,连接RC1。作与直线OR相距lAB的直线tt, 直线tt与RC1交于F点,以R为圆心、RF为半径作圆弧与圆l交于A点,A点即为所求固定铰链中心。 由图可得机架AD的长度lAD以及lAC1、lAC2。由lAC1=lBClAB或lAC2=lBC+lAB可得连杆BC的长度lBC。,(a),(b),解 上述设计方法是正确的。依据如下:如图(b)所示,,因 B1C1=B2C2,RC1=RC2, B1C1R=B2C2R所以 RB1C1RB2C2,RB1=RB2,B1RB2= C1RC2= C1AC2=,所以,,因 AB1=AB2 所以 AB1R AB2R, ARB1= ARB2= /2, B1AR= B2AR=90 /2 即 ARB1ARB2为全等的两个直角三角形。由于RtC1HRRtAB2R,因此当已知lAB时,可按相似性求lAB,确定A点在圆上的位置。,也可通过解析推导证明由此确定的A点,满足,根据本题作法有,因,而,在 RtARW中:,且,所以,即,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。