ImageVerifierCode 换一换
格式:DOCX , 页数:39 ,大小:164.61KB ,
资源ID:1009203      下载积分:30 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1009203.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数学与应用数学本科毕业论文--非线性常微分方程解法初探.docx)为本站会员(龙***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

数学与应用数学本科毕业论文--非线性常微分方程解法初探.docx

1、 本 科 毕 业 论 文 ( 设 计 )题目: 非线性常微分方程解法初探 学生姓名 贺建霞 成绩(采用四级记分制)学 号 2013114010 指导教师 郭真华 院 系 数学学院 专 业 数学与应用数学 年 级 2013 级 教务处制诚信声明本人郑重声明:本人所呈交的毕业论文(设计) ,是在导师的指导下独立进行研究所取得的成果。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或在网上发表的论文。特此声明。论文作者签名: 日 期: 2017 年 5 月 2 日摘要本文在线性常微分方程理论的基础之上,对

2、非线性常微分方程的解法进行了初步探讨。对于某些特殊类型的非线性常微分方程,可借助变量替换方法将其转化为线性常微分方程,进而运用初等积分法求出非线性常微分方程的解。对于不能转化为线性常微分方程的类型,分为连续解和非连续解两种情况来讨论。针对连续解,根据不同的情况分别用不同的理论证明解的存在唯一性。针对非连续解,首先,用能量法对相应的解作线性估计,适当地确定解空间;然后,利用巴拿赫压缩映像原理证明解的适定性,初步求出非线性方程的弱解;最后,将非线性常微分方程看作特殊的偏微分方程,应用椭圆方程的弱解正则性理论来研究非线性常微分方程弱解的正则性,将弱解转变为强解。关键字:非线性常微分方程;线性常微分方

3、程 ;变量替换;适定性;正则性AbstractBased on the theory of linear ordinary differential equations, the solution of nonlinear ordinary differential equations is discussed. For some special types of nonlinear ordinary differential equations, it can be transformed into linear ordinary differential equations by mean

4、s of variable substitution method, and then the solutions of nonlinear ordinary differential equations are obtained by elementary integral method. For the types that can not be transformed into linear ordinary differential equations, it is divided into two cases: continuous solution and discontinuou

5、s solution. For the continuous solution, the existence and uniqueness of the solution is proved by the corresponding theory. For the discontinuous solution, firstly, the solution of the corresponding solution is linearly estimated by the energy method. Then, the solution space is determined by using

6、 the Banachian compression image principle. Then, the weak solution of the nonlinear equation is obtained. The nonlinear ordinary differential equation is regarded as a special partial differential equation. The weak solution regularity theory of elliptic equation is used to study the regularity of

7、weak solution of nonlinear ordinary differential equation, and the weak solution is transformed into strong solution.Keyword: nonlinear ordinary differential equation;linear ordinary differential equation ;variable substitution ; well-posedness of solution;regularity目 录序言1第一章 将非线性常微分方程转化为线性常微分方程2 1.

8、1 伯努利微分方程2 1.2 变量分离型方程3 1.3 可转化为变量分离型方程的方程类型3 1.4 全微分方程5 1.5 可转化为全微分方程的方程类型6 第二章 非线性微分方程解的适定性 72.1 连续解72.1.1 解的存在唯一性72.1.2 解的延拓72.2 非连续解82.2.1 巴拿赫压缩映像原理8 2.2.2 解的适定性82.2.3 弱解的正则性 10第三章 总结28参考文献29序言常微分方程是伴随着微积分慢慢发展起来的,随着各种各样实际问题的出现以及根据实际生活中的问题建立方程以后在数学方面所作的推广,常微分方程日益引起人们的关注,该问题已成为近代数学的一个重要研究方向。常微分方程在

9、很多科学技术领域内提供了关键性的理论支撑,发挥着重要的作用,比如在力学、经济学、生物技术、电子技术领域等等。自动控制、人口问题、弹道轨道问题、导弹飞行的稳定性研究、经济问题等等,这些实际问题最终都要么转化为求微分方程的解,要么转化为研究方程对应的解的性质. 实际生活中的问题大多转变为求满足给定初边值条件的微分方程的特解. 一方面,常微分方程理论的逐步发展推动了诸多技术领域的发展。另一方面,这些技术的出现也促进了常微分方程理论日益走向成熟。非线性常微分方程作为常微分方程的重要构成内容,在理论和实践方面均有着重要的意义。非线性常微分方程远复杂于线性常微分方程,运用初等积分法求解非线性常微分方程几乎

10、是不可行的,所以我们必须用不同于线性微分方程理论的方法去研究非线性微分方程的解。已有的研究给出了一些可以求解的特殊的非线性常微分方程以及关于方程对应的解的定性分析。本文在线性常微分方程和偏微分方程的理论基础之上,对非线性常微分方程的解法进行了初步研究,主要包括两部分内容。第一部分内容整理归纳出可转化为线性常微分方程的特殊类型的非线性常微分方程;第二部分内容在研究了微分方程的连续解之外,还研究了其非连续解。针对连续解,通过判断已知函数关于自变量是否满足利普希茨条件分别用不同的方法来证明解的适定性。针对非连续解,其适定性可应用巴拿赫压缩映像原理来证明。其中,第二部分内容是本文的重点,将非线性常微分

11、方程看作特殊的偏微分方程,借助偏微分方程中的理论和方法来研究非线性常微分方程的解。1 将非线性常微分方程转化为线性常微分方程对于某些特殊类型的一阶非线性常微分方程,可以用积分法求解。极少数高阶方程可以通过变量替换使方程降阶,进而可以用积分法求解。在每一次降阶的过程当中,都是在解一阶常微分方程。因此,对于非线性常微分方程,下面先介绍几类能用初等积分的方法求解的一阶非线性微分方程。考虑如下形式的一阶非线性常微分方程(1.1)=(,), (,) 其中,D 是 中的一个单连通区域,f 对 x 和 y 连续。21.1 伯努利微分方程 =()+()(1.2)其中 P(x),Q(x)为 x 的连续函数,且 n0,1。通过变量替换可将伯努利微分方程化为线性常微分方程。y=0 为方程的解。当 y0 时,在(1.2)式两边同乘以 ,得(1.3)=1()+()作变量替换 (1.4)=1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。