ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:230KB ,
资源ID:1045423      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1045423.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(苏教版八年级数学上册知识点详细全面精华.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

苏教版八年级数学上册知识点详细全面精华.doc

1、1苏教版八年级数学上册知识点 第 1 章 全等三角形 一、全等三角形概念 : 能够完全重合的两个三角形叫做全等三角形。两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。夹边就是三角形中相邻两角的公共边,夹角就是三角形中有公共端点的两边所成的角。 一个三角形经过平移、翻折、旋转可以得到它的全等形。 2、全等三角形的表示全等用符号“” 表示,读作“ 全等于”。如ABCDEF,读作“三角形ABC全等于三角形DEF”。注:记两个全等三角形时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形有哪些性质 (1):全等三角形的对应边相等、对应角相等。 (2

2、):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。 4、学习全等三角形应注意以下几个问题: (1):要正确区分“对应边” 与“ 对边”,“对应角”与 “ 对角”的不同含义; (2):表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上; (3):“有三个角对应相等”或“ 有两边及其中一边的对角对应相等” 的两个三角形不一定全等; (4):时刻注意图形中的隐含条件,如 “公共角” 、“公共边” 、“对顶角” 5、全等三角形的判定 边边边:三边对应相等的两个三角形全等(可简写成“SSS” ) 边角边:两边和它们的夹角对应相等两个三角形全等(

3、可简写成“SAS” ) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA” ) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS” ) 2直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边” 或“ HL”) 6、全等变换 只改变图形的位置,二不改变其形状大小的图形变换叫做全等变换。 全等变换包括一下三种: (1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。 (2)对称变换:将图形沿某直线翻折180,这种变换叫做对称变换。 (3)旋

4、转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。5、证明两个三角形全等的基本思路:一般来讲,应根据题设并结合图形,先确定两个三角形已知相等的边或角,然后按照判定公理或定理,寻找并证明还缺少的条件.其基本思路是: ).有两边对应相等,找夹角对应相等,或第三边对应相等.前者利用SAS判定,后者利用SSS判定. ).有两角对应相等,找夹边对应相等,或任一等角的对边对应相等.前者利用ASA判定,后者利用AAS判定. ).有一边和该边的对角对应相等,找另一角对应相等.利用AAS判定.).有一边和该边的邻角对应相等,找夹等角的另一边对应相等,或另一角对应相等.前者利用SAS判定,后者

5、利用AAS判定. 二、角的平分线:1、角平分线:把一个角平均分为两个相同的角的射线叫该角的平分线; 2、角平分线的性质定理:角平分线上的点到角的两边的距离相等:平分线上的点;点到边的距离; 3、角平分线的判定定理:角的内部到角的两边的距离相等的点在角平分线上4、方法规律 (1)有角平分线,通常向角两边引垂线。 (2)证明点在角的平分线上,关键是要证明这个点到角两边的距离相等,即证明线段相等。常用方法有:使用全等三角形,角平分线的性质和利用面积相等,但特别要注意点到角两边的距离。 (3)注意:证题时可直接应用角平分线性质定理和判定定理,不必去找全等三角形。 3第 2 章 轴对称图形 一、轴对称图

6、形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。 2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点 3、轴对称图形和轴对称的区别与联系 区别:(1)轴对称是指两个图形间的位置关系,轴对称图形是指一个具有特殊形状的图形;(2)轴对称涉及两个图形,轴对称图形是对一个图形而言的联系:(1)定义中都有一条直线,都要沿着这条直线折叠重合;(2)如果把轴对称图形沿对称轴分成两部分(即

7、看成两个图形),那么这两个图形就关于这条直线成轴对称;反过来,如果把轴对称的两个图形看成一个整体,那么它就是一个轴对称图形 4.轴对称的性质 关于某直线对称的两个图形是全等形。 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线 1. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。 2.线段垂直平分线上的点与这条线段的两个端点的距离相等 43.与一条线段两个端点距离相等的点,在线段的

8、垂直平分线上 4.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等 三、画轴对称图形的步骤:1、点出关键点。找出所有的关键点,即图形中所有线段的端点。2、确定关键点到对称轴的距离。关键点离对称轴多远,对称点就离对称轴多远。3、点出对称点。4、连线。按照给出的一半图形将所有对称点连接成线段。5、轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。 四、等腰三角形的性质 1、 有关定理及其推论 定理:等腰三角形有两边相等;定理:等腰三

9、角形的两个底角相等。 推论1:等腰三角形顶角的平分线平分底边且垂直于底边,也就是说,等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)。推论2:等边三角形的各角相等,且每一个角都等于60.等腰三角形是以底边的垂直平分线为对称轴的轴对称图形; (二)等腰三角形的判定 1、 有关的定理及其推论 定理:如果一个三角形有两个角相等,那么这两个角所对的边相等(等角对等边) 推论1、三个角都相等的三角形是等边三角形。 推论2、有一个角等于60的等腰三角形是等边三角形。 推论3、在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。 1.等腰三角形的性质 5.等腰三角形的

10、两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)等腰三角形的其他性质: 等腰直角三角形的两个底角相等且等于45 等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。 等腰三角形的三边关系:设腰长为a,底边长为b,则 b/2 x2xa 是 x 的平方 x 的平方是 ax 是 a 的平方根 a 的平方根是 x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数 x 的平方等于 a,即,那么这个正数 x 叫做 a 的算术平方根a 的算术x2平方根记为 ,读作“根号 a”,a 叫做被开方数 a规定:0 的算术平方根是

11、 0.也就是,在等式 (x0)中,规定 。2 ax(2) 的结果有两种情况: 当 a 是完全平方数时, 是一个有限数;a当 a 不是一个完全平方数时, 是一个无限不循环小数。(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。(4)夹值法及估计一个(无理)数的大小(5) (x0) ax2 axa 是 x 的平方 x 的平方是 ax 是 a 的算术平方根 a 的算术平方根是 x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。9( 0) a 0a;注意 的双重非负性:a2 a- ( ax3xa 是 x 的立方 x 的立方是 ax 是 a 的立方根 a 的

12、立方根是 x(6) ,这说明三次根号内的负号可以移到根号外面。33三、实数 一、实数的概念及分类无理数:像前面的很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数。实数:有理数和无理数统称实数。1、实数的分类正有理数有理数 零 有限小数或无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数正实数10实数 0负实数整数包括正整数、零、负整数。零和正整数又叫自然数。正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等;32,7(2)有特定意义的数,如圆周率 ,或化简后含有

13、的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001等;二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=b,反之亦成立。数 a 的相反数是a,这里 a 表示任意一个实数。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,零的绝对值是 0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4. 实数与数轴上点的关系:每一个无理数都可以用数轴上的一个点表示出来,数轴上的点有些表示有理数,有些表示无理数,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。三、科学记数法和近似数 1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。