1、 第 1 页 共 10 页相似三角形题型讲解相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。一、如何证明三角形相似例 1、如图:点 G 在平行四边形 ABCD 的边 DC 的延长线上,AG 交 BC、BD 于点 E、F,则AGD 。分析:关键在找“角相等” ,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角
2、G 外,由 BCAD 可得 1= 2,所以AGDEGC。再1= 2(对顶角) ,由 ABDG可得4=G,所以 EGC EAB。评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似” 。 (2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。例 2、已知ABC 中,AB=AC ,A=36,BD 是角平分线,求证:ABCBCD分析:证明相似三角形应先找相等的角,显然C 是公共角,而另一组相等的角则可以通过计算来求得。借助于计算也是一种常用的方法。证明:A=36,ABC 是等腰三角形,ABC= C=72又 BD 平分ABC ,则DBC=36 在
3、ABC 和BCD 中,C 为公共角,A=DBC=36ABCBCD例 3:已知,如图,D 为ABC 内一点连结 ED、AD,以 BC 为边在ABC 外作CBE=ABD,BCE=BAD求证:DBEABCB G 第 2 页 共 10 页分析: 由已知条件ABD=CBE,DBC 公用。所以DBE=ABC,要证的DBE 和ABC,有一对角相等,要证两个三角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。从已知条件中可看到CBEABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决。证明:在CBE 和ABD 中,CBE=ABD, BCE=BADCBEABD =BCAED即: =在DBE
4、 和ABC 中CBE=ABD, DBC 公用CBE+DBC=ABD+DBCDBE=ABC第 3 页 共 10 页且 =BCEADDBEABC例 4、矩形 ABCD 中,BC=3AB,E、F,是 BC 边的三等分点,连结AE、AF、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形 E(2)如图:其中1= 2,则 ADEABC 称为“相交线型 ”的相似三角形。 EE1242(3)如图:1=2,B= D,则ADEABC,称为 “旋转型”的相似三角形。观察
5、本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及EAF 与ECA解:设 AB=a,则 BE=EF=FC=3a,由勾股定理可求得 AE= , a2在EAF 与ECA 中,AEF 为公共角,且 2AECF所以EAFECA(两边对应成比例且夹角相等的两个三角形相似) 第 4 页 共 10 页注:以上两例中都用了相似三角形的判定定理 2,该定理的灵活应用是教学上的难点所在,应注重加强训练。二、如何应用相似三角形证明比例式和乘积式例 1、ABC 中,在 AC 上截取 AD,在 CB 延长线上截取 BE,使 AD=BE,求证:DF AC=BC FE分析:证明乘积式通常是将乘积式变形为比例
6、式及 DF:FE=BC:AC,再利用相似三角形或平行线的性质进行证明:证明:过 D 点作 DKAB,交 BC 于 K,DKAB,DF :FE=BK:BE又AD=BE,DF :FE=BK :AD,而 BK:AD=BC :AC即 DF:FE= BC :AC ,DF AC=BC FE例 2:已知:如图,在ABC 中,BAC=90 0,M 是 BC 的中点,DMBC 于点 E,交 BA 的延长线于点 D。求证:(1)MA 2=MD ME;(2)DEA2证明:(1)BAC=90 0,M 是 BC 的中点,MA=MC,1=C,DMBC,C=D=90 0-B,1=D,2=2,MAEMDA, ,MAEDAB
7、CDEM1 2 第 5 页 共 10 页MA 2=MD ME,(2)MAEMDA, ,MDAEE 2评注:(1)通过一对相似三角形来证明比例线段,是证比例线段的一种基本方法。本例第(1)小题证明 MA2=MDME,经常可以把其中的 MA 看作一对相似三角形的公共边,再去寻觅与确定需证相似的三角形。(2)本例的关键是证明MAEMDA,这种具有特殊关系(有一个公共角和一条公共边)的三角形的相似,在解题中应用很多,应从下面两个方面深刻理解:命题 1 如图,如果1=2,那么ABDACB,AB 2=AD AC。命题 2 如图,如果 AB2=AD AC,那么ABDACB,1=2。A BCD1例 3:如图A
8、BC 中,AD 为中线,CF 为任一直线,CF 交 AD 于 E,交 AB 于 F,求证:AE:ED=2AF:FB。第 6 页 共 10 页分析:图中没有现成的相似形,也不能直接得到任何比例式,于是可以考虑作平行线构造相似形。怎样作?观察要证明的结论,紧紧扣住结论中“AE:ED”的特征,作 DGBA 交 CF 于 G,得AEFDEG, 。与结论DGAFE相比较,显然问题转化为证 。BFAED21FBD21证明:过 D 点作 DGAB 交 FC 于 G则AEFDEG。(平行于三角形一边的直线截其它两边或两边的延长线所得三角形与原三角形相似)(1)DGAFED 为 BC 的中点,且 DGBFG 为
9、 FC 的中点则 DG 为CBF 的中位线, (2)BFDG1将(2)代入(1)得: FBADEA2评注:(1)为了得到比例式,通常用过一点作某一直线的平行线的方法,在作平行线时必须注意紧扣与结论有关的线段。(2)在探索证题思路的过程中,我们可以采取“做做比比,比比做做”的方法,即构造相似形,写出比例式时要始终注意待证结论中的有关线段,并及时与待证结论中的有关线段进行比较,以便确定下一步需要解决什么问题。第 7 页 共 10 页三、如何用相似三角形证明两角相等、两线平行和线段相等。例 1:已知:如图 E、F 分别是正方形 ABCD 的边 AB 和 AD 上的点,且 。求证:AEF=FBD31A
10、DFBE分析:要证角相等,一般来说可通过全等三角形、相似三角形,等边对等角等方法来实现,本题要证的两个角分别在两个三角形中,可考虑用相似三角形来证,但要证的两个角所在的三角形显然不可能相似(一个在直角三角形中,另一个在斜三角形中),所以证明本题的关键是构造相似三角形,证明:作 FGBD,垂足为 G。设 AB=AD=3k则 BE=AF=k,AE=DF=2k,BD= k23ADB=45 0,FGD=90 0DFG=45 0DG=FG= kDF2BG= 3 21BGAE又A=FGB=90 0AEFGBF AEF=FBD评注:本例是通过构造一对相似三角形,而证明两个角相等,而证明两个三角形相似又运用了
11、代数法,设参数,计算边长,从而证明两个三角形的对应边成比例。运用代数法解几何题一般在遇到正方形和正三角形的条件时效果很好,同学们可以试试看。例 2、在平行四边形 ABCD 内,AR、BR、CP、DP 各为四角的平分线, 求证:SQAB,RP BCAB CDEFG 第 8 页 共 10 页分析:要证明两线平行较多采用平行线的判定定理,但本例不具备这样的条件,故可考虑用比例线段去证明。利用比例线段证明平行线最关键的一点就是要明确目标,选择适当的比例线段。要证明 SQAB,只需证明AR:AS=BR : DS。证明:在ADS 和ARB 中。DAR=RAB= DAB,DCP=PCB= ABC2121AD
12、S ABR DSBRA但ADS CBQ,DS=BQ,则 ,SQAB ,同理可证,RPBCBQRAS例 3、已知 A、C、E 和 B、F、D 分别是O 的两边上的点,且ABED,BCFE ,求证:AFCD分析:要证明 AFCD ,已知条件中有平行的 条件,因而有好多的比例线段可供利用,这就要进行正确的选择。其实要证明 AFCD,只要证明 即ODFCA可,因此只要找出与这四条线段相关的比例式再稍加处理即可成功。证明:ABED,BCFE , ODBEAFC两式相乘可得:例 4、直角三角形 ABC 中,ACB=90,BCDE 是正方形,AE 交 BC 于 F,FGAC 交 AB 于 G,求证:FC=F
13、G第 9 页 共 10 页 分析:要证明 FC=FG,从图中可以看出它们所在的三角形显然不全等,但存在较多的平行线的条件,因而可用比例线段来证明。要证明 FC=FG,首先要找出与 FC、FG 相关的比例线段,图中与 FC、FG 相关的比例式较多,则应选择与 FC、FG 都有联系的比作为过渡,最终必须得到 (“?”代表相同的线段或相等的线段) ,便可完成?FGC证明。证明: FGAC BE,ABEAGF 则有 AEFBG而 FC DE AEDAFC则有 DCCAFDE又BE=DE(正方形的边长相等) ,即 GF=CF。FGBE例 5、Rt ABC 锐角 C 的平分线交 AB 于 E,交斜边上的高 AD 于 O,过 O 引 BC 的平行线交 AB 于 F,求证:AE=BF证明:CO 平分C,2=3,故 Rt CAE RtCDO, CDAOE又 OFBC, BF又Rt ABDRt CAD, ,即ACOBFEAE=BF。 第 10 页 共 10 页评注:应用比例线段证明两直线平行或两线段相等时,(1)要注意如果相关的比例式较多,一时难以作出选择,应将所有相关的比例式都写出来,然后再仔细对比、分析选出有用的。(2)要注意比例性质的灵活运用,善于总结比例式变换时的方法和技巧。变化时,要头脑清醒,思路清晰,一个字母也不放过,并且每一步都要有根有据,切不可无根据的乱变,或者相当然地硬变。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。