ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:22.34KB ,
资源ID:1172701      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1172701.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(差倍问题例题.docx)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

差倍问题例题.docx

1、差倍问题例题 1. 一条路长 100 米,从头到尾每隔 10 米栽 1 棵梧桐树,共栽多少棵树? (1)路分成 1001010 段,共栽树 10+111 棵。2.12 棵柳树排成一排,在每两棵柳树中间种 3 棵桃树,共种多少棵桃树? (2)3(121 )33 棵。 3、哥哥和弟弟两人 3 年后年龄和是 27 岁,弟弟今年的年龄正好是哥哥和弟弟两人年龄的差。哥哥和弟弟今年各多少岁? 解题思路:从题中“哥哥和弟弟两人 3 年后年龄和是 27 岁”这句话,可以求出哥哥和弟弟今年的年龄和是 27-3221 (岁) ,从“弟弟今年的年龄正好是哥哥和弟弟两人的年龄差” ,即哥哥年龄-弟弟年龄弟弟年龄。可以

2、知道哥哥今年的年龄是弟弟年龄的 2 倍,弟弟年龄是哥哥年龄的 1/2。 解:弟弟今年的年龄 (27-32 )(1+2)7 (岁) 哥哥今年的年龄 7214(岁)或(27-32)(1+1/2)14(岁) 141/27(岁) 1994 年妈妈的年龄是姐姐和妹妹年龄和的 4 倍,2002 年妈妈的年龄是姐姐和妹妹年龄和的 2 倍,问妈妈出生是哪一年? 解题思路:把 1994 年姐姐和妹妹的年龄和看作 1 倍,那么妈妈 1994年就是这样的 4 倍。到 2002 年过了 8 年,姐姐妹妹的年龄增加了8216 (岁) ,要使妈妈年龄仍然是姐姐和妹妹年龄和的 4 倍,那么妈妈必须增加 16464(岁),而

3、实际只增加 8 岁。现在少增加64-8 56(岁) ,就少了 2002 年姐姐和妹妹这时的年龄和56228 (岁) ,也求出了 2002 年妈妈的年龄。 解:(2002-1994)216(岁) (164-8)(4-2)28(岁)妈妈的年龄 28256(岁) 妈妈出生年 2002-561946 (年) 盈亏问题 明明过生日,同学们去给他买蛋糕,如果每人出 8 元,就多出了 8元;每人出 7 元,就多出了 4 元那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少? 分析“多 8 元“与“多 4 元“两者相差 8-4=4 (元) ,每个人要多出 8-7=1 (元) ,因此就知道,共有 41=4 (人)

4、,蛋糕价钱是 84-8=24(元) 5 年前小芳的年龄是小英年龄的 7 倍,10 年后小芳年龄是小英年龄的 2 倍,问今年小芳、小英两人各多少岁? 解题思路:画线段图可以看出,因为 10 年后小芳的年龄是小英年龄的 2 倍,所以两人当时的年龄差为小英当时的年龄,即 5+10+小英5 年前的年龄。因为 5 年前小芳的年龄是小英年龄的 7 倍,两人的年龄差为小英当时年龄的 6 倍。所以 15 相当于小英 5 年前年龄的 5倍,可求出小英 5 年前的年龄。 解:(10+5)(7-1-1)3(岁) 小英年龄 3+58(岁)小芳年龄 37+526 (岁) 6 年前,母亲的年龄是儿子的 5 倍。6 年后母

5、子年龄和是 78 岁。问:母亲今年多少岁? 解题思路:6 年后母子年龄和是 78 岁,可以求出母子今年年龄和是7862=66(岁)。6 年前母子年龄和是 6662=54(岁)。又根据 6年前母子年龄和与母亲年龄是儿子的 5 倍,可以求出 6 年前母亲年龄,再求出母亲今年的年龄。 解 母子今年年龄和:786 2=66(岁) 母子 6 年前年龄和:6662=54(岁) 母亲 6 年前的年龄:54(51) 5=45(岁) 母亲今年的年龄:45 6=51(岁) 答:母亲今年是 51 岁。 1.哥哥与弟弟三年后年龄之和是 27 岁, 弟弟今年的年龄等于两人的年龄差,问兄岁, 弟岁. 1、乙两人的年龄和正

6、好是 100 岁。当甲像乙现在这样大时,乙的年龄正好是甲年龄的一半。甲、乙两人今年各多少岁? 1、哥哥与弟弟三年后年龄之和是 27 岁, 弟弟今年的年龄等于两人的年龄差 ,问兄( ) 岁,弟( ) 岁. 解题思路: 27-23=21( 岁) 21(2+1)=7(岁) 72=14(岁) 答:哥哥今年 14 岁,弟弟今年 7 岁. 2、甲、乙两人的年龄和正好是 100 岁。当甲像乙现在这样大时,乙的年龄正好是甲年龄的一半。甲、乙两人今年各多少岁? 解题思路:由“乙的年龄正好是甲年龄的一半” 再结合“当甲像乙现在这样大时,乙的年龄正好是甲年龄的一半”可推出,甲的年龄要和乙现在的年龄相等,甲要减少几岁

7、,乙要增加相同的岁数,且这个年龄相当于乙的 1 倍,可以看出:现在乙的年龄如果有 2 份,甲的年龄就有这样的 3 份,甲、乙两人的年龄共有 221=5(份) 。5 份对应着两人的年龄和 100 岁。这样就很容易求出甲、乙两人各自的年龄。 解: 甲、乙两人年龄的份数和是多少? 22 1=5 (份) 每份是多少? 100 5=20(岁) 乙的年龄是多少岁? 202=40 (岁) 甲的年龄是多少岁? 20(2 1)=60(岁) 综合算式是:100(22 1)2=40 (岁) 100(2 21)(2 1)=60(岁) 答:甲今年 60 岁,乙今年 40 岁。 1、兄弟二人的年龄之和是 25 岁,四年后

8、,哥哥比弟弟大 5 岁,今年哥哥( )岁,弟弟( ) 岁. 2、今年甲的年龄是乙的年龄的 3 倍,三年后甲比乙大 4 岁, 今年甲( )岁, 乙( )岁. 1.兄弟二人的年龄之和是 25 岁, 四年后,哥哥比弟弟大 5 岁, 今年哥哥 岁,弟弟 岁. 解题思路:在年龄问题中,两人的年龄差是不变的量,在这道题中,兄弟两人相差 5 岁是不变的量,如果哥哥小 5 岁就和弟弟一样大,总数变为 25-5=20(岁)相当于弟弟年龄的 2 倍, 可以先求出弟弟的 ,相应再求哥哥的,或者弟弟大5 岁就和哥哥相同, 总数变为 25+5=30(岁)相当于哥哥年龄的 2 倍, 可以求出哥哥的,再求弟弟的. 解法一:

9、25-5=20( 岁) 202=10(岁) 10+5=15(岁) 答:弟弟 10 岁,哥哥 15 岁. 2.今年甲的年龄是乙的年龄的 3 倍,三年后甲比乙大 4 岁,今年甲 岁,乙 岁 . 解题思路: 4(3-1)=2(岁) 23=6(岁) 答:甲今年 6 岁, 乙今年 2 岁. 平均数问题 果品店把 2 千克酥糖, 3 千克水果糖, 4 千克奶糖混合成什锦糖已知酥糖每千克 8元,水果糖每千克 11 元,奶糖每千克 17 元问:什锦糖每千克多少钱? 解答:要求混合后的什锦糖每千克的价钱,必须知道混合后的总钱数和与总钱数相对应的总千克数即:什锦糖的总价:28+311+417=117 (元) ,什

10、锦糖的总千克数:2+3+4=9 (千克) 什锦糖的单价:1179=13 (元) 东东、明明两个人的平均年龄是 14 岁,明明、亮亮两个人的平均年龄是 17 岁,那么亮亮比东东大几岁? 解答:东东、明明的年龄和是: 142=28 (岁) ,明明、亮亮的年龄和是:172=34 (岁) ,所以亮亮、东东的年龄差为:34-28=6 (岁) 1、 求和:12 3 4 56 78 2、 计算:12 3 98 99100 1、 求和:12 3 4 56 78 解: 1234 5678 (1+8)82 36 2、 计算:12 3 98 99100 解:12 3 98 99100 (1+100) 1002 50

11、50 等差数列 1)11、14 、17、20、95 、98 这个等差数列的项数是( ) 。 (2 )今天是周日,再过 78 天是周几? (1)11、14、17 、20、95、98 这个等差数列的项数是( ) 。 解答:(98-11)31=30 (2 )今天是周日,再过 78 天是周几? 解答:( 781)7=112 ,所以是周一。 (1)2、4、6 、8、28、30 这个等差数列有( )项。(2)2、8、14 、20、62 这个数列共有( )项。 1)2 、4 、6 、8、 、28 、30 这个等差数列有( )项。 解答:(30-2)2+1=15 (2 )2、8、14 、20、62 这个数列共

12、有( )项。 解答:(62-2)6+1=11 1) 1、3 、5 、7 、这个数列从左向右数第 10 项是( ) 。 (2) 7、10、13、16、这个数列从左向右数,第 41 项是( ) 。 解答:(1)a10=1+(10-1) 2=19;(2)a41=7+ (41-1)3=127; 1、在 10 和 40 之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数? 2、一个等差数列的首项是 6,第 8 项是 55,公差是( ) 。 1、在 10 和 40 之间插入四个数,使得这六个数构成一个等差数列。那么应插入哪些数? 解答:d=(40-10) (4+1)=6,插入的数是:16、22

13、 、28、34。 2、一个等差数列的首项是 6,第 8 项是 55,公差是( ) 。 解答:d=(55-6)(8-1)=7 和差倍问题 大白兔和小灰兔共采摘了蘑菇 160 个。后来大白兔把它的蘑菇给了其它白兔 20 个,而小灰兔自己又采了 10 个。这时,大白兔的蘑菇是小灰兔的 5 倍。问:原来大白兔和小灰兔各采了多少个蘑菇? 解答:(160-20 10)(51)25(个) 25-10 15( 个) 160-15 145(个) 【小结】这道题是和倍应用题,因为有“和“、有“倍数“。但这里的“和“不是 160,而是 1602010150, “1 倍“数却是“小灰兔又自己采了 10 个后的蘑菇数

14、“。线段图如下: 根据和倍公式,小灰兔现有蘑菇(即“1 倍“数) (160-2010) (51)25(个),故小灰兔原有蘑菇 25-1015(个),大白兔原有蘑菇 160-15145(个)。 1、兄弟俩今年的年龄和是 30 岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁? 2、甲对乙说: “我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的 2 倍减 7.”问:甲、乙二人现在各多少岁?1、兄弟俩今年的年龄和是 30 岁,当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半,哥哥今年几岁? 分析:根据条

15、件“当哥哥像弟弟现在这样大时,弟弟的年龄恰好是哥哥年龄的一半” ,说明兄弟二人的 年龄和 30 岁正好相当 5 个年龄差.其中哥哥今年年龄相当 3 个年龄差.所以 3053=18(岁)就是今年哥哥的年龄。 答:哥哥今年 18 岁 2 、甲对乙说:“我在你这么大岁数的时候,你的岁数是我今年岁数的一半.”乙对甲说:“我到你这么大岁数的时候,你的岁数是我今年岁数的2 倍减 7.”问:甲、乙二人现在各多少岁? 分析:从已知条件中可以看出甲比乙年龄大,甲乙年龄差这是一个不变的量。 甲对乙说“我在你这么大岁数的时候” ,意思是说几年以前.这几年就是甲乙的年龄差.因此甲整句话可理解为:乙今年的岁数,减去年龄

16、差,正好是甲今年岁数的一半.乙对甲说“我到你这么大岁数的时候” ,意思是说几年后.因此,乙整句话可理解为:甲今年的岁数,加上年龄差,正好是乙今年岁数的 2 倍减去 7。即甲今+ 年龄差=2乙今-7,把甲乙的对话用下图表示为: 绳子 用一根绳子测井深。把绳子折三折再去量,井外余 3 尺;把绳子折四折去量,则距井口 1 尺。求绳长和井深。 解答:如果我们事先把绳子接上4 尺,然后折四折去量井深,此时的绳子正好与井口相平,可见井深就是这条接上后的绳子的尺数除以 4。再如果将这条接上 4 尺后的绳子折成三折去量井深,此时留在井外的绳子不是 33=9(尺) ,而是 9+4=13(尺) 。这留在井外 13

17、 尺的绳子长是由于新绳子由四折改为三折去测量而引起的,它其实就是井深,即井深为 13 尺,于是原来绳子的长度为 134-4=48(尺) 巧算 一只蜘蛛八条腿,一只蜻蜒有六条腿、二对翅膀,蝉有六条腿和一对翅膀。现有这三种小昆虫共 18 只,共有 118 条腿和 20 对翅膀,问每种小昆虫各有几只? 解答:这个问题比前几个问题要复杂一些。但仔细考虑,发现蜻蜓和蝉的腿条数都是 6,因此可从腿的条数入手。假设 18 只全是蜘蛛,那么共有 818=144(条)腿。但实际上只有 118 条,两者相差 144-118=26(条) ,产生差异的原因是 6 条腿的蜻蜒和蝉都作为 8 条腿的蜘蛛了,每一只相差 2

18、 条腿。被当作蜘蛛的蜻蜒和蝉共有 262=13(只) 。 因此,蜘蛛有 18-13=5(只) 。 再假设 13 只昆虫都是蜻蜒,应有 132=26(对)翅膀,与实际翅膀数相差 26-206(对) ,每把一只蝉当一只蜻蜒,翅膀数就增加 1 对,所以蝉的只数是 61=6(只) ,蜻蜓数是 13-6=7(只) 。 拆数补数 188873 548 996 9898203 解答:式= (188+12)+(873-12) (熟练之后,此步可略) 200+861=1061 式= (548-4 )(996 4 ) =544+1000=1544 式= (9898102)(203-102) =10000+101=

19、10101 兔和鸡 鸡兔共有脚200 只,若将鸡换成兔,兔换成鸡,则共有脚 160 只,求鸡、兔各有几只? 解答:鸡有 20 只,兔有 40 只。 分析:鸡兔互换之后,脚数少了(只) ,这说明一定是兔比较多,且比鸡多(只) ,那么鸡兔原有脚 200 只,减去 20 只兔,剩下的鸡兔数量相等,腿数共(只) ,这时鸡兔头数相同,则兔脚是鸡脚的两倍,故鸡脚有 (只),鸡有 (只) ,兔有 (只) 。 小结:解决鸡兔同笼问题最常用的方法便是假设法。对于基本的鸡兔同笼题,可公式求解:1.如果假设全是兔,那么则有 鸡数=(每只兔子脚数鸡兔总数-实际脚数)(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数

20、 2.如果假设全是鸡,那么就有 兔数=(实际脚数-每只鸡脚数鸡兔总数)(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数 求对于复杂一些的鸡兔同笼,可用假设法加减头脚,转化成和差倍问题来解决。常见的思路是:头数相同,则兔脚是鸡脚的两倍;脚数相同,则鸡头是兔头的两倍。 整除问题 有 3 个连续自然数,最小数能被 5 整除,中间的数能被 4整除,最大数能被 3 整除。则符合上述条件的最小的三位自然数是哪三个? 解答:符合题意的最小三个三位数为 115、116、117. 因中间数是 4 的倍数,显然为偶数,所以最小数和最大数都是奇数。最小数能被 5 整除,且要满足它是奇数的话,则最小数的末位只能是 5.故中间数末位为 6,最大数末位为 7.最大数末位为 7,且满足被3 整除,则最小可取 117,这时中间数为 116,满足被 4 整除。故符合题意的最小的 3 个三位连续数是 115、116 、117 小结:本题是整除性质的综合应用。5、4 均是尾数判定, 3 是和系判定。最小数末位可取 0、5,但为了满足中间数被 4 整除,只能取 5,这是一个突破点。 和倍问题 两个数的和是 2016,其中一个加

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。