温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-13330554.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(《复变函数论》第四章.doc)为本站会员(晟***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质1、复数项级数和复数序列:复数序列就是:在这里,是复数,一般简单记为。按照是有界或无界序列,我们也称为有界或无界序列。设是一个复常数。如果任给,可以找到一个正数,使得当nN时,那么我们说收敛或有极限,或者说是收敛序列,并且收敛于,记作。如果序列不收敛,则称发散,或者说它是发散序列。令,其中a和b是实数。由不等式容易看出,等价于下列两极限式:因此,有下面的注解:注1、序列收敛(于)的必要与充分条件是:序列收敛(于a)以及序列收敛(于b)。注2、复数序列也可以解释为复平面上的点列,于是点列收敛于,或者说有极限点的定义用几何语言可以叙述为:任给的一个邻域,相应地可以找到一个正整数,使得当时,在这个邻域内。注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。定义4.1复数项级数就是或记为,或,其中是复数。定义其部分和序列为:如果序列收敛,那么我们说级数收敛;如果的极
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。