2.2.2椭圆的简单几何性质(2)1标准方程范围对称性 顶点坐标焦点坐标半轴长离心率 a、b、c的关系|x| a,|y| b关于x轴、y轴成轴对称;关于原点成中心对称(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)长半轴长为a,短半轴长为b. aba2=b2+c2|x| b,|y| a同前(b,0)、(-b,0)、(0,a)、(0,-a)(0 , c)、(0, -c)同前同前同前2例:求适合下列条件的椭圆的标准方程经过点P(3,0)、Q(0,2);长轴长等于20,离心率3/5。解: 方法一:设方程为mx2ny21(m0,n0,mn),将点的坐标方程,求出m1/9,n1/4。方法二:利用椭圆的几何性质,以坐标轴为对称轴的椭圆与坐标轴的交点就是椭圆的顶点,于是焦点在x轴上,且点P、Q分别是椭圆长轴与短轴的一个端点,故a3,b2,所以椭圆的标准方程为 注:待定系数法求椭圆标准方程的步骤: 定型; 定量或题型二:利用椭圆的几何性质求标准方程33:已知椭圆的中心在原点,焦点在坐标轴上,长轴是短轴的三倍,且椭圆经过点P(3,0),求椭圆的方程。分类讨论的数学思想4椭圆第二