我们在前面学过,在平面直角坐标系中,两点确定一条直线,一点和倾斜角也能确定一条直线在平面直角坐标系中,如何确定一个圆呢?复习引入AMrxOy 当圆心位置与半径大小确定后,圆就唯一确定了因此一个圆最基本要素是圆心和半径xOyA (a,b)Mr(x, y)引入新课 如图,在直角坐标系中,圆心(点)A的位置用坐标 (a,b) 表示,半径r的大小等于圆上任意点M(x, y)与圆心A (a,b) 的距离 符合上述条件的圆的集合是什么?你能用描述法来表示这个集合吗?符合上述条件的圆的集合:圆的方程xOyA (a,b)Mr(x, y) 圆上任意点M(x, y)与圆心A (a,b)之间的距离能用什么公式表示?圆的方程根据两点间距离公式:则点M、A间的距离为:即: 是否在圆上的点都适合这个方程?是否适合这个方程的坐标的点都在圆上?圆的标准方程 点M(x, y)在圆上,由前面讨论可知,点M的坐标适合方程;反之,若点M(x, y)的坐标适合方程,这就说明点 M与圆心的距离是 r ,即点M在圆心为A (a, b),半径为r的圆上 把这个方程称为圆心为A(a, b),半径长为r 的圆的方程,把它叫做圆的标准方