ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:200KB ,
资源ID:1442195      下载积分:10 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1442195.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(勾股定理的历史.doc)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

勾股定理的历史.doc

1、- 1 -勾股定理的历史勾股定理是“人类最伟大的十个科学发现之一” ,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前 572?公元前 497?)于公元前 550 年首先发现的。但毕达哥拉斯对勾股定理的证明方法已经失传。著名的希腊数

2、学家欧几里得(Euclid,公元前 330公元前 275)在巨著几何原本(第卷,命题 47)中给出一个很好的证明。(右图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作周髀算经的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?” 商高回答说:“ 数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形矩得到的一条直角边勾等于 3,另一条直角边股等于 4 的时候,那么它的斜边弦就必定是 5。这个原理是

3、大禹在治水的时候就总结出来的呵。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前 1100 年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾 3 股 4 弦 5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。- 2 -在稍后一点的九章算术一书中(约在公元 50 至 100 年间)(右图),勾股定理得到了更加规范的一般性表达。书中的勾股章说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。 中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明

4、的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图” ,用形数结合得到方法,给出了勾股定理的详细证明(右图) 。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重

5、大意义。勾股定理的证明据不完全统计,勾股定理的证明方法已经多达 400 多种了。下面我便向大家介绍几种十分著名的证明方法。【证法 1】 (赵爽证明)以 a、b 为直角边(ba) , 以 c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于 ab21. 把这四个直角三角形拼成如图所示形状. RtDAH RtABE, HDA = EAB. HAD + HAD = 90, EAB + HAD = 90, ABCD 是一个边长为 c 的正方形,它的面积等于 c2. EF = FG =GH =HE = ba ,HEF = 90. EFGH 是一个边长为 ba 的正方形,它的面积等于 2ab.ba

6、c GDACBFEH- 3 -ab abccA BCDE 2214cab 2a.【证法 2】 (课本的证明)做 8 个全等的直角三角形,设它们的两条直角边长分别为 a、b,斜边长为 c,再做三个边长分别为 a、b、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是 a + b,所以面积相等. 即 abc2142142 , 整理得 .【证法 3】 (1876 年美国总统 Garfield 证明)以 a、b 为直角边,以 c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于21. 把这两个直角三角形拼成如图所示形状,使 A、E、 B 三点在一条直线上. R

7、tEAD RtCBE, ADE = BEC. AED + ADE = 90, AED + BEC = 90. DEC = 18090= 90. DEC 是一个等腰直角三角形,它的面积等于21c.又 DAE = 90, EBC = 90, ADBC. ABCD 是一个直角梯形,它的面积等 于 2211caba. 2cb.【趣闻】:在 1876 年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好babab abacbacb

8、a cbacbacbacba2ba- 4 -奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为 3 和 4,那么斜边长为多少呢?”伽菲尔德答到:“是 5 呀。”小男孩又问道:“如果两条直角边分别为 5 和 7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于 5 的平方加上 7 的平方。”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。于是伽

9、菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。1876年 4 月 1 日,伽菲尔德在新英格兰教育日志上发表了他对勾股定理的这一证法。1881 年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法。【证法 4】 (欧几里得证明)做三个边长分别为 a、b、c 的正方形,把它们拼成如图所示形状,使 H、C、B 三点在一条直线上,连结 BF、CD. 过 C 作 CLDE,交 AB 于点 M,交 DE 于点 L. AF = AC,AB = AD,FAB

10、= GAD, FAB GAD, FAB 的面积等于21a,GAD 的面积等于矩形 ADLM 的面积的一半, 矩形 ADLM 的面积 = .同理可证,矩形 MLEB 的面积 = 2b. 正方形 ADEB 的面积 = 矩形 ADLM 的面积 + 矩形 MLEB 的面积 22bac ,即 22cba.【证法 5】 (利用相似三角形性质证明)如图,在 RtABC 中,设直角边 AC、BC 的长度分别为 a、b,斜边 AB 的长为 c,过点 C 作CDAB,垂足是 D. 在 ADC 和 ACB 中, ADC = ACB = 90,CAD = BAC, ADC ACB. ADAC = AC AB,即 AB

11、DC2.同理可证,CDB ACB,cbacbaA BCD EFGHMLKA BDCacb- 5 -从而有 ABDC2. 2A,即 22cba【证法 6】 (邹元治证明)以 a、b 为直角边,以 c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于21. 把这四个直角三角形拼成如图所示形状,使 A、E、B 三点在一条直线上,B、F、C 三点在一条直线上,C、G、D 三点在一条直线上. RtHAE RtEBF, AHE = BEF. AEH + AHE = 90, AEH + BEF = 90. HEF = 18090= 90. 四边形 EFGH 是一个边长为 c 的正方形. 它的面积等于

12、 c2. RtGDH RtHAE, HGD = EHA. HGD + GHD = 90, EHA + GHD = 90.又 GHE = 90, DHA = 90+ 90= 180. ABCD 是一个边长为 a + b 的正方形,它的面积等于 2ba. 2214cba. .【证法 7】 (利用切割线定理证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c. 如图,以 B 为圆心 a 为半径作圆,交 AB 及 AB 的延长线分别于 D、E,则 BD = BE = BC = a. 因为BCA = 90,点 C 在B 上,所以 AC 是B 的切线. 由切割线定理,得 AE

13、C2=BAE=ac= 2,D G CFAHE Babcabcab c abcabaa B ACE Dc- 6 -即 22acb, 22cb.【证法 8】 (作直角三角形的内切圆证明)在 RtABC 中,设直角边 BC = a,AC = b,斜边 AB = c. 作 RtABC 的内切圆O,切点分别为 D、E、F(如图) ,设O 的半径为 r. AE = AF,BF = BD,CD = CE, BFACDBEABCA= = r + r = 2r,即 rcba2, crba2. 2,即 224cr, abSABC1, ,又 AOCBAOBCSS = bracr21= rca= rc21= 2, A

14、BCr4, abc2, 2ca, 22.勾股定理的应用一、填空题1在 RtABC 中,C=90,若 a=5,b=12,则c=_;若 a=8,c=10,则 b=_;若 c=61,b=60,则 a=_;c bar rrOFED CBAABC20m5- 7 -若 ab=34,c=10 则 SABC =_。2如图,某人欲横渡一条河,由于水流的影响,实际上岸地点 C 偏离欲到达点 B200m,结果他在水中实际游了 520m,求该河流的宽度为_。3如图,OAB=OBC= OCD=90, AB=BC=CD=1,OA=2,则 OD2=_.4已知直角三角形两直角边的长分别为 3cm,4cm,第三边上的高为_.5

15、等腰ABC 中,AB=AC=17cm,BC=16cm,则 BC 边上的高 AD=_。6在平静的湖面上,有一支红莲,高出水面 1 米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为 2 米,问这里水深是 _m。在 ABC 中,若 AB2 + BC2 = AC2,则A + C 。.如图,直角三角形的两直角边长分别是 6cm 和 8cm,则带阴影的正方形面积是 。如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为 7cm,则正方形A,B,C,D 的面积之和为_cm 2。在一棵树的 10 米高处有两只猴子,一只猴子爬下树走到离树 20 米处的池塘的 A

16、 处。另一只爬到树顶 D 后直接跃到 A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_米。二选择题已知一个 Rt的两边长分别为 3 和 4,则第三边长的平方是( )A、25 B、14 C、7 D、7 或 25OABCDABCD7cmDBC A- 8 -在直角三角形中,斜边与较小直角边的和、差分别为 8、2,则较长直角边长为( )A.5 B .4 C.3 D.2 如图,在水塔 O 的东北方向 32m 处有一抽水站 A,在水塔的东南方向 24m处有一建筑工地 B,在 AB 间建一条直水管,则水管的长为( ) A45cm B40cm C50cm D56cm小丰妈妈买了一部 29 英

17、寸(74cm)电视机,下列对 29 英寸的说法中正确的是A. 小丰认为指的是屏幕的长度; B. 小丰的妈妈认为指的是屏幕的宽度;C. 小丰的爸爸认为指的是屏幕的周长; D. 售货员认为指的是屏幕对角线的长度已知,如图长方形 ABCD 中,AB=3cm,AD=9cm,将此长方形折叠,使点 B 与点 D 重合,折痕为 EF,则ABE 的面积为( )A、6cm 2 B、8cm 2 C、10cm 2 D、12cm 2已知,如图,一轮船以 16 海里/时的速度从港口 A 出发向东北方向航行,另一轮船以 12 海里/时的速度同时从港口 A 出发向东南方向航行,离开港口 2 小时后,则两船相距( )A、25

18、 海里 B、30 海里 C、35 海里 D、40 海里如图,正方形网格中的ABC,若小方格边长为 1,则ABC 是( )(A)直角三角形 (B)锐角三角形 (C)钝角三角形 (D)以上答案都不对男孩戴维是城里的飞盘冠军,戈里是城里最可恶的踩高跷的人,两人约定一比高低戴维直立肩高 1.5 米,他投飞盘很有力,但需在 13 米内才有威力;戈里踩高跷时鼻子离地 6.5 米,他的鼻子是他惟一的弱点戴维需离戈里( )远时才能刚好击中对方的鼻子而获胜A. 13 米 B12 米 C. 8 米 D5 米A东南西 北ABEFDC北南A 东ABC- 9 -三解答题在某一平地上,有一棵树高 8 米的大树,一棵树高

19、3 米的小树,两树之间相距 12 米。今一只小鸟在其中一棵树的树梢上,要飞到另一棵树的树梢上,问它飞行的最短距离是多少?(画出草图然后解答)如图,A 城气象台测得台风中心在 A 城正西方向 320km 的 B 处,以每小时 40km 的速度向北偏东 60的 BF 方向移动,距离台风中心 200km 的范围内是受台风影响的区域。(1) A 城是否受到这次台风的影响?为什么?(2) 若 A 城受到这次台风影响,那么 A 城遭受这次台风影响有多长时间?已知,如图,四边形 ABCD 中,AB=3cm ,AD=4cm,BC=13cm,CD=12cm,且A=90,求四边形 ABCD 的面积。如图,铁路上

20、A,B 两点相距 25km,C,D 为两村庄,DAABABEPF东北ABCDADE BC- 10 -于 A,CBAB 于 B,已知 DA=15km,CB=10km,现在要在铁路 AB 上建一个土特产品收购站 E,使得 C,D 两村到 E 站的距离相等,则 E 站应建在离 A 站多少 km 处?.印度数学家什迦逻(1141 年-1225 年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边,渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题。如图,在ABC 中,AB=AC ,P 为 BC 上任意一点,请用学过的知识,说明:AB 2AP 2=PBPC。 AB P C

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。