1、“S 形轨迹无碳小车的结构设计摘要:针对第四届全国大学生工程训练综合能力竞赛题目,设计一辆通过重力驱动的纯机械结构的无碳小车,且小车具有周期性越障功能。通过所学知识,设计并制作该小车,参加比赛。设定不同的参数,借助工程软件 MATLAB 对小车的轨迹进行仿真计算。通过分析,设计出一辆满足比赛要求的小车。并且通过调试证明,小车能够稳定行驶,具有较高的可靠性。关键词:无碳小车 越障 轨迹 仿真 0 前言本文针对第四届全国大学生工程训练综合能力竞赛关于“S”形轨迹的要求,设计并制作了一种将重力势能转换为动能,并且按照“S”形轨迹稳定前行的无碳小车。小车为三轮结构,前轮为方向轮;后面一轮为驱动轮,一轮
2、为从动轮。小车具有可调节的转向控制机构,以适应 700-1300mm 间距的不同间距障碍物。1 小车结构设计本文把小车的机构分为:原动机构、传动机构、转向机构、微调机构与车身。除了轴承、螺栓螺母等标准件可以直接选用外,小车的其余部件均使用 LY102 铝合金制作。本文的设计目的是使小车各部分的尺寸协调,满足强度要求、实现不同距离的越障功能。下面是各个机构的设计:1.1 原动机构设计原动机构是利用重物下落时的重力势能转化为动能,从而驱动小车前进和转向的机构。重物是 1kg 的标准砝码,重物周围是三根均布的钢管,从而约束重物的自由度,使重物直线下降,减少了能量损失,保证了小车重心的稳定性。重物通过
3、尼龙线绕在小车的绳轮上,在下降的过程中,带动绳轮的转动,实现了能量转换。在实际测试中,证明了该结构简单、能量转化率高、成本低等特点。1.2 传动机构设计传动部分是原动机构和小车主动轮动力传递的枢纽,本文设计的小车的传动机构由后轮、一级齿轮、及其相关零件组成。由于小车具有转向的功能,为不干扰小车的转向,后轮采用差速连接。小车的右后轮为主动轮,左后轮为从动轮。主动轮与传动机构相连,驱使小车的运动,从轮轮用轴承空套在后轴上,跟随小车的运动。为了适应不同间距越障,同时增大小车行驶的距离,我们采用多组齿轮啮合的方式,将 700-1300mm 的间距大致分为三组:700900mm, 9001100mm,1
4、1001300mm 。分组后可根据不同障碍物间距,对应着不同组齿轮的啮合,从而调整越障的幅度。与单组齿轮传动相比,这种传动方法越过的障碍物更多,行走距离更远。下图是传动机构的齿轮分布图,通过移动后轮轴上的齿轮组,则可以切换不同组齿轮的啮合。图 3 传动齿轮分布示意图根据本文设计,两后轮轮距为 150mm,且后轮的直径为 150mm,且保证小车最逼近障碍物时的安全距离,即最小振幅为 200mm。下面是三组齿轮啮合的具体计算:在间距为 700900mm 时,以满足最大桩距 900mm,且轨迹曲线为余弦曲线,取 x 为小车轨道中心线位移,y 为小车偏离中心线位移,单位为 mm,则有)90cos(20
5、x对弧长进行积分得, mdydyf xss 201),(800通过计算,当弧长为 2002mm 时,最大振幅是 330mm,此时桩距为 700mm。在间距为 9001100mm 时,以满足最大桩距 1100mm,则有)10cos(21xy对弧长进行积分得, mdydyf xss 23701),(20在间距为 11001300mm 时,以满足最大桩距 1300mm,则有)130cos(2xy对弧长进行积分得, mdydyf xss 27461),(260因为我们利用线切割特种加工齿轮,齿轮的模数可以是非标准模数,故针对以上三组数据,结合后轮的直径与一个周期轨迹的弧长,得到三组不同的传动比,计算得
6、到;8.5,130;0.5,190;25.4,907 2 ixixix1.3 转向机构设计转向机构是小车的关键机构,是小车前进过程中实现周期性运动的重要保证。我们采用了空间曲柄连杆机构,实现了小车在行驶过程中,前轮左右周期性的转动。该机构结构简单,稳定性较高,连杆之间使用球铰连接,摩擦阻力较小,方向轮叉架与车身采用了推力球轴承和一对法兰轴承,减小转弯过程中的摩擦阻力,提高转轴的同轴度,保证了转向机构的稳定性和可靠性。图 6 转向机构示意图下面是转向机构的杆长设计计算:根据后轮轮距为 150mm,则取曲柄与车中心线距离为 ,且与转向轮mf5连接的摆杆长度也为 ,同时转向轮间与后轴的距离为 ,根据
7、小me5b138车运动轨迹,计算小车的最大转角为桩距为 700mm 时的转角,通过计算在桩距为700mm 时,轨迹公式为, )70cos(3xy根据质心处转弯半径与前轮转角的关系为, ( 为前轮的转角)tanr根据小车轨迹在计算小车的曲率半径为, y5.12)(得 ,转角 。此时对应曲柄和连杆的最大合长度 。93.0tan0max43 maxl通过计算得到最大合长度 ,且连杆长度 与曲柄长度 分别达l.1n到各自的最大值,且根据长度关系,得 。3.,9522nmnm8.32,5.0axax同理计算小车在桩距为 1300mm 时的最小转角。通过轨迹和曲率半径公式,得 ,转角 。此时对应曲柄和16
8、.tn0in1连杆的最小合长度 。minl通过计算达到最小合长度为 ,且曲柄和连杆分别达到各自的最ml49.0in小值,根据长度关系,得 。49.10,9522nmmnm04.9,45.9iin综上,连杆长度 ,曲柄长度 ,单位为:mm。),5()832(为本文加工零件提供了参数,同时也为调试时,提供了连杆长度和曲柄长度的范围。方便了后期的调试。图 7 转向机构三维示意图1.4 微调机构设计微调机构是小车柔性的体现,调整它能使小车能够适应不同的障碍物间距。无碳小车的微调主要体现在对曲柄长度和连杆长度的微调。曲柄的长度控制的是小车行驶的周期即桩距,曲柄长度越长,周期越短,即适应障碍物的间距越短。
9、连杆的长度控制的是方向轮左右转角多少有关。根据轨迹对称性,所以要调整连杆的长度,使左右转角尽可能相等,否则轨迹就会偏离赛道,这决定了小车绕桩的情况。所以曲柄长度和连杆长度的调整恰当与否是比赛时的关键。因为轨迹线对两者长度非常敏感的,所以要精确的调试两者的长度。本文使用的是类似丝杠的机构,用带螺纹的的连杆和曲柄,并用螺母锁死。调整时拧松螺母,旋转螺栓,改变长度,这样可以比较精确的调整曲柄和连杆的长度,提高了小车的可靠性。1.5 车身车身是一切机构得以实现的载体,其主要承受的是重物的压力和地面对车轮的反作用力。为了满足强度,本文采用 3mm 铝合金板,对不承受力且不影响强度的地方,采取镂空处理。2
10、 结论本次设计的小车的创新之处在于能适应不同的间距,采用不同传动比的齿轮啮合,减小了行驶过程中的运动幅度,从而使小车行驶的距离更远。并且通过类似丝杠的微调机构,通过拧螺丝的方式调整曲柄和连杆长度,从而更加方便、精确地调整小车的行进间距。本文加工出了较高精度的零件,装配后进行了调试。实际应用结果表明,设计加工出的小车具有较高的稳定性与可靠性,满足比赛要求。参考文献:1王斌.”无碳小车”的创新性设计J.山西大同大学学报,2012(2).2杨明忠,朱家诚.机械设计M.武汉理工大学出版社.2013.3白雪,唐鹏达.机械传动无碳小车的设计构想J.工业设计,2011(8).4赵登峰,陈永强 ,邓茂云,机械原理M,西南交通大学出版社,2012.5杜志强.基于 MATLAB 语言的机构设计与分析M.上海科学技术出版社,2011:118-120
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。