温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-15163325.html】到电脑端继续下载(重复下载不扣费)。
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。 2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。 3: 文件的所有权益归上传用户所有。 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。 5. 本站仅提供交流平台,并不能对任何下载内容负责。 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
本文(初三数学上圆中常见【辅助线】的作法.docx)为本站会员(老***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!
1、遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:利用垂径定理;圆心角及其所对的弧、弦和弦心距之间的关系;利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。【例题】如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C、D二点。求证:AC=BD证明:过O作OEAB于E,则OECD,OE过O,由垂径定理得:AE=BE,CE=DE,AE-CE=BE-DE,即AC=BD故答案为:过O作OEAB于E,则OECD,OE过O,由垂径定理得:AE=BE,CE=DE,AE-CE=BE-DE,即AC=BD2、遇到90度的圆周角时常常连结两条弦没有公共点的另一端点作用:利用圆周角的性质,可得到直径。【例题】如图,在RtABC中,BCA=90o,以BC为直径的O交AB于E,D为AC中点,连结BD交O于F。求证:BC/BE=CF/EF证明:连结CEBC为O的直径,BFC为90,BEC为90
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。