数学建模案例之线性规划奶制品的生产与销售优化问题及其一般模型:引引 言言 优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。例如:l 设计师要在满足强度要求等条件下选择材料的尺寸,使 结构总重量最轻;l 公司经理要根据生产成本和市场需求确定产品价格,使所获 利润最高;l 调度人员要在满足物质需求和装载条件下安排从各供应点 到需求点的运量和路线,使运输总费用最低;l 投资者要选择一些股票,债券下注,使收益最大,而风险最小l 一般地,优化模型可以表述如下:这是一个多元函数的条件极值问题,其中 x=x 1,x 2,x n。许多实际问题归结出的这种优化模型,但是其决策变量个数 n 和约束条件个数 m 一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划数学规划就是解决这类问题的有效方法。引引 言言数学规划模型分类:“数学规划是运筹学和管理科学中应用及其广泛的分支。在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。”H.P.Williams.数学规划模型的建立。数学规划包括线性规划线性规划、非