ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:237.50KB ,
资源ID:1521798      下载积分:10 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1521798.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(转动惯量公式表.doc)为本站会员(gs****r)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

转动惯量公式表.doc

1、常见几何体转动惯量公式表对于细杆当回转轴过杆的中点并垂直于杆时;J=m(L2)/12其中 m 是杆的质量,L 是杆的长度。当回转轴过杆的端点并垂直于杆时:J=m(L2)/3其中 m 是杆的质量,L 是杆的长度。对于圆柱体当回转轴是圆柱体轴线时;J=m(r2)/2其中 m 是圆柱体的质量,r 是圆柱体的半径。对于细圆环当回转轴通过中心与环面垂直时,J=mR2;当回转轴通过边缘与环面垂直时,J=2mR2;R 为其半径对于薄圆盘当回转轴通过中心与盘面垂直时,J= 1/2mR2;当回转轴通过边缘与盘面垂直时,J= 3/2mR2;R 为其半径对于空心圆柱当回转轴为对称轴时,J=1/2m (R1 )2+(

2、R2)2;R1 和 R2 分别为其内外半径。对于球壳当回转轴为中心轴时,J=2/3mR2 ;当回转轴为球壳的切线时,J= 5/3mR2;R 为球壳半径。对于实心球体当回转轴为球体的中心轴时,J= 2/5mR2;当回转轴为球体的切线时,J= 7/5mR2;R 为球体半径对于立方体当回转轴为其中心轴时,J= 1/6mL2;当回转轴为其棱边时,J=2/3mL2;当回转轴为其体对角线时,J=(3/16 )mL2 ;L 为立方体边长。只知道转动惯量的计算方式而不能使用是没有意义的。下面给出一些(绕定轴转动时)的刚体动力学公式。角加速度与合外力矩的关系:角加速度与合外力矩式中 M 为合外力矩, 为角加速度

3、。可以看出这个式子与牛顿第二定律是对应的。角动量:角动量刚体的定轴转动动能:转动动能注意这只是刚体绕定轴的转动动能,其总动能应该再加上质心动能。只用 E=(1/2)mv2 不好分析转动刚体的问题,是因为其中不包含刚体的任何转动信息,里面的速度v 只代表刚体的质心运动情况。由这一公式,可以从能量的角度分析刚体动力学的问题。转动惯量(Moment of Inertia)是刚体绕轴转动时惯性(回转物体保持其匀速圆周运动或静止的特性)的量度,用字母 I 或 J 表示。其量值取决于物体的形状、质量分布及转轴的位置。转动惯量只决定于刚体的形状、质量分布和转轴的位置,而同刚体绕轴的转动状态(如角速度的大小)

4、无关。形状规则的匀质刚体,其转动惯量可直接用公式计算得到。而对于不规则刚体或非均质刚体的转动惯量,一般通过实验的方法来进行测定,因而实验方法就显得十分重要。转动惯量的表达式为 I= mi*ri2,若刚体的质量是连续分布的,则转动惯量的计算公式可写成 I=r2dm=r2dV(式中 mi 表示刚体的某个质元的质量,ri 表示该质元到转轴的垂直距离, 表示该处的密度,求和号(或积分号)遍及整个刚体。) 转动惯量的量纲为 L2M,在 SI 单位制中,它的单位是 kgm2。平行轴定理平行轴定理:设刚体质量为 m,绕通过质心转轴的转动惯量为 Ic,将此轴朝任何方向平行移动一个距离 d,则绕新轴的转动惯量

5、I 为:I=Ic+md2这个定理称为平行轴定理。一个物体以角速度 绕固定轴 z 轴的转动同样可以视为以同样的角速度绕平行于 z 轴且通过质心的固定轴的转动。也就是说,绕 z 轴的转动等同于绕过质心的平行轴的转动与质心的转动的叠加垂直轴定理垂直轴定理:一个平面刚体薄板对于垂直它的平面的轴的转动惯量,等于绕平面内与垂直轴相交的任意两正交轴的转动惯量之和。垂直轴定理表达式: Iz=Ix+Iy式中 Ix,Iy,Iz 分别代表刚体对 x,y,z 三轴的转动惯量.对于非平面薄板状的刚体,亦有如下垂直轴定理成立 2:垂直轴定理利用垂直轴定理可对一些刚体对一特定轴的转动惯量进行较简便的计算.刚体对一轴的转动惯量,可折算成质量等于刚体质量的单个质点对该轴所形成的转动惯量。由此折算所得的质点到转轴的距离 ,称为刚体绕该轴的回转半径 ,其公式为 I=M2,式中 M 为刚体质量;I 为转动惯量。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。