一元多项式的最大公因式的几种求法苏昌怀( 陇东学院数学系 甘肃 庆阳 745000)论文提要:多项式理论是高等代数的重要组成部分,求最大公因式在多项式理论研究中占有显著地位。本文从辗转相除、矩阵的初等变换以及矩阵的斜消变换等不同角度给出了一元多项式的最大公因式的不同求法。关键词: 最大公因式; 辗转相除; 初等变换; 斜消变换1.辗转相除法 辗转相除法是求两个多项式的最大公因式的一般方法,在每次作除法时用的是带余除法。它的原理和一般实例可以参见高等代数。按照高等代数中的辗转相除法求多项式的最大公因式时,往往会出现较为复杂的分数运算。为了运算的简化,我们可以用一个非零常数去乘被除式或者除式。这种方法不仅在辗转相除法的开始可以用,而且在辗转相除的过程中也这是由于若= +于oCp,我们有+,及故另外,为了简化计算,在辗转相除的过程中,若遇到两个多项式的次数相同时,可以任去一个作除式,另一个作为被除式。并且为了减小多项式的系数,也可被除式减去除式的若干倍再做辗转相除,不改变的结果,由此,辗转相除法得到了进一步的