ImageVerifierCode 换一换
格式:PPT , 页数:37 ,大小:236KB ,
资源ID:1582995      下载积分:12 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1582995.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(种群生态学模型.ppt)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

种群生态学模型.ppt

1、种群生态学模型 所谓 种群 ( Population)是指在特定时间里占据一定空间的同一物种的有机体的集合。种群生态学主要就是研究种群的时间动态及调节机理,即研究某一生物群体或某些生物群体个体数量或密度的变化规律。 1 单个种群增长模型 单个种群的增长模型,主要是讨论单个生物群体个体数量或密度随时间的变化规律。为方便起见,我们总是假设种群数量(种群中所含个体的数量)是时间 t 的函数 N(t),并认为它关于时间 t 是连续且充分光滑的,则 :表示这个种群的增长速率; :表示种群个体的平均增长率。 此外,令 b 为种群个体的繁殖率, d 为死亡率,则 r = b d 也为个体的平均增长率。注 :

2、由于 r只依赖于种群的繁殖和生存能力,因此它是种群本身增长的内在特征的度量,称之为 内禀增长率 。 Malthus(马尔萨斯)模型 假设条件(1) 把种群数量仅仅看成是时间 t 的函数N(t),不考虑个体间的差异(如年龄、性别、大小等)对种群增长的影响。(2) 认为 N(t) 是连续且充分光滑的。这个条件仅对一个大的种群,如果其生育和死亡现象的发生在整个时间段内是随机的,可以认为是近似成立的。(3) 生育和死亡对任何个体来说都是随机发生的,即利用个体的平均增长率建立模型就相当于只研究一个大群体平均效应的确定性变化的侧面。 (4) 内禀增长率 r 为常数,即每个个体的增殖行为独立于其它个体的存在

3、,不受其它个体存在与否的影响。(5) 生物体处于一种不随时间改变的定常的环境中,即环境(如温度、湿度等)的变化不会对种群的增殖行为产生明显的影响。(6) 种群在一定的空间范围内是封闭的,即在所研究的时间范围内不存在迁移(迁入或迁出)的现象。在上述的假设条件下,容易看出 如果 N0 = N(t0) 为初始时刻 t0 时的种群数量,则单个种群增长的模型为上述初值问题称为单个种群增长的 Malthus 模型。不难求得 Malthus 模型的解析解为 关于 Malthus 模型,我们有如下的一些说明:(1) 由于 t 时, N(t),所以这个模型只适宜于描述某些特定的生物种群增长初期一定时间范围内的动

4、态,具有很大的局限性。但是尽管如此,由于这个模型的简单明了的特点,仍不失为描述生物动态种群的一个基础模型。(2) 虽然建立模型所作的假设条件对于生物种群来说时苛刻的,不现实的,但是在此基础上我们不仅可以建立一个相当简单的模型,而且构成了一条使得模型逐步现实化的途径。(3) 内禀增长率 r 表示的是个体的平均增长率,通过观测直接得到它的估计是困难的。通常我们用种群的 倍增期 Td 来估计 r。所谓种群的倍增期 Td 就是当 r 0时种群增长一倍所用的时间。因为且 N(t0 + Td) = 2N(t0),所以 2N(t0) = N(t0)erTd,从而 Td = (ln2)/r,即 r = (ln2)/Td。 Td 是非常便于观测的,也可以直接使用 Td来描述种群的增长行为: Logistic(罗杰斯蒂克)模型我们对自然界长期观察所得到的结论是:在一个有限资源的环境内,种群是不可能无限增长的,它总会存在一个饱和水平。当种群增长到接近于这个饱和水平时,其增长速度应逐渐减慢而渐近于零。这样一来, Malthus 模型中关于种群增长时相互独立的假设条件 (4) 就与事实相矛盾了。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。