ImageVerifierCode 换一换
格式:PPT , 页数:19 ,大小:355KB ,
资源ID:1585579      下载积分:10 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1585579.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(离散数学-等价关系与偏序关系.ppt)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

离散数学-等价关系与偏序关系.ppt

1、离散数学集合论1主要内容n 集合代数n 二元关系n 函数集合的基本概念集合的运算有穷集合的计数集合恒等式有序对与笛卡儿积二元关系关系的运算关系的性质 关系的闭包等价关系与划分偏序关系函数的定义与性质函数的复合与反函数双射函数与集合的基数27.6 等价关系与划分例 7.16 设 A=1,2,8, 定义 A 上的关系 R如下 :验证 R是 A上的等价关系 . 一 . 等价关系定义 7.15 设 R为非空集合 A上的关系 .如果 R是 自反的 , 对称的和 传递的 ,则称 R为 A上的等价关系 .对等价关系 R,若 R, 则称 x 等价于 y,记为 x y or xRy. 解 : xA,有 , 故

2、R是自反的 .x,yA, 若 , 则 , 故 R是对称的 .x,y,zA,若 , 则 , 故 R是传递的 . R是 A上的一个等价关系 .3等价类定义 7.16 设 R 为非空集合 A上的等价关系 ,xA, 令称 xR为 x在 R下的等价类 (简称为 x的等价类 ),有时简记为 x. x 称为该等价类的代表元 .注 :一个等价类是 A中在等价关系 R下彼此等价的所有元素的集合 ,等价类中各元素的地位是平等的 ,每个元素都可以作为其所在等价类的代表元 .例如 ,在上例中的等价关系 R下 ,A中元素形成了三个等价类 :1=4=7=1, 4, 7; 2=5=8=2, 5, 8;3=6=3, 6. ,

3、 , , , , , , , , , , , , , , 4等价类的性质定理 7.14 设 R 为非空集合 A上的等价关系 ,则( 1) xA, x是 A的非空子集 .( 2) x, yA,如果 xRy, 则 x=y( 3) x, yA,如果 x与 y不具有关系 R, 则 x 与 y 不相交 .( 4) x | xA = A证 : (1) 显然 .(2) z x R R( R是对称的) R R R R z y, 从而 x y同理可得 ,y x. 故 x = y5等价类的性质(3) 反证法 .假设 x y ,则存在 zx y.因而 z x 且 z y,即 R R. 根据 R的对称性和传递性 ,必

4、有 R.这与前提条件矛盾 .故原命题成立 .(4) 先证 再证 因此6商集与划分定义 7.17 设 R为非空集合 A上的等价关系 ,以 R的所有等价类作为元素 , 形成的集合称为 A关于 R的 商集 ,记为 A/R,即 :例如 :例 7.16中等价关系形成的商集为 : A/R 1, 4, 7, 2, 5, 8, 3, 6定义 7.18 设 A为非空集合 ,若 A的子集族 (P(A), 是由 A的一些子集形成的集合 ) 满足下列条件 :(1) (2) xy(x,y xyxy= )(3) 则称 是 A的一个 划分 ,而称 中的元素为 A的划分块或类 . 五 . 集合的划分7等价关系与划分例 7.1

5、7 设 A=a, b, c, d , 则 1=a,b,c ,d和 2=a,b,c,d都是 A的划分 ,而 3=a,a,b,c,d和 4= ,a,b,c都不是 A的划分 .注 :给定非空有限集 A上的一个等价关系 R,在 R下彼此等价的元素构成的子集便形成了 A的一个划分 ,它其实就是商集 A/R, 其每个类 (等价块 ) 就是 R的一个等价类 ;反之 ,任给 A的一个 划分 ,可定义 A上的关系 R如下 :R=x,yAx 与 y在 的同一个类中 可以验证 R是 A上的一个等价关系 .可见 A上的等价关系与 A的划分是一一对应的 .8例例 7.18 求 A=1, 2, 3上所有的等价关系 .解

6、先求出 A的所有划分 :1=1, 2, 3; 2=1, 2, 3;3=2, 1, 3; 4=3, 1, 2;5= 1, 2, 3.与这些划分一一对应的等价关系是 :1: 全域关系 EA2: R 2=, I A3: R 3=, I A4: R 4=, I A5: 恒等关系 IA97.7 偏序关系一. 偏序关系与偏序集定义 7.19 设 R为非空集合 A上的关系 .如果 R是 自反的 ,反对称的 和传递的 ,则称 R 为 A上的偏序关系 ,记为 .对一个偏序关系 ,如果 ,则记为 x y.注 :1. 集合 A上的恒等关系 IA和空关系都是 A上的偏序关系 ,但全域关系 EA 一般不是 A上的偏序关系 .2. 实数域上的小于等于关系(大于等于关系) ,自然数域上的整除关系 ,集合的包含关系等都是偏序关系 .10

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。