ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:52KB ,
资源ID:1597893      下载积分:10 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1597893.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(不定积分定义的相关问题探讨.doc)为本站会员(gs****r)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

不定积分定义的相关问题探讨.doc

1、不定积分定义的相关问题探讨摘 要:在当前的数学研究体系中,不定积分定义是相关专家学者普遍研究的一个问题,但现阶段所提出的定义,无论是“一个函数族” ,还是“所有原函数”都无法将不定积分完整的表述清楚,在性质以及运算等方面,都存在一些不可避免的问题。本文便以不定积分定义为研究基础,从性质推证与运算过程等两个方面,研究不定积分定义的相关问题。 关键词:不定积分;定义;问题 在人们进行数学推理的过程中,需要以数学概念为依托,数学概念的合理性会在很大程度上对数学推理以及数学运算产生影响,从根本上讲,不定积分这一概念属于高等数学中不可或缺的概念之一,但当前的定义中存在一定程度上的缺陷,导致在进行性质推证

2、与运算的过程中存在一些问题,不利于学习,因此,需要对这些问题进行深入探讨,并对当前不定积分定义进行恰当修正。 一、不定积分定义 现阶段,在很多教材中,不定积分定义主要来源于原函数及其结构,具体定义如下: 在区间中,f (x)的不定积分是这一区间中的所有原函数,将其表示成为f (x)dx。如果 F (x)属于 f (x)中的原函数之一,那么便有公式: f (x)dx = F(x)+C 上式中,C 表示的是随意一个常数。在上述定义的基础上,f (x)dx 所表示的实际上是一个集合: f (x)dx = F (x)+c:F (x)=f (x),x 通过上述定义方法,在对不定积分进行性质推证和运算的过

3、程中,便会出现一些问题1。 二、性质推证问题 在进行性质推证的过程中,主要问题主要表现如下: (f (x)dx ) =f (x) 上述公式主要证明的是积分与求导两种运算相互可逆,另外,还可以对不定积分所呈现出来的最终运算结构进行有效验证。当前存在的问题是:(f (x)dx ) 究竟是什么意思?一种说法是对集合求导,而另一种说法是对函数求导2。 如果是前者,则缺少对集合导数相关概念的论述,求导更是无从谈起;如果是后者,虽然存在函数导数的相关概念,求导方法也可以运用,不过从定义中来看,f (x)dx 实际上属于集合,并不属于函数,所以,不能通过函数求导所运用的相关公式和方法。 在这种条件下,一些教

4、材中不得不将(f (x)dx) 定义成求导整个集合中的函数,这样才从一定程度上解决了这一问题,但从根本上讲,在推导不定积分性质时,还会面临相关问题。 除上述性质以外,不定积分还存在另一个性质: f (x)g (x)dx = f (x)dxg (x)dx 一般情况下,教材中只说明上述公式是成立的,但却缺乏对上述公式的证明,虽然一部分教材中提出了通过“集合相等”的方式,证明公式的左右两边存在包含关系,不过证明过程却没有明确给出。 从上文所述的定义中可以看出,如果运用“集合相等”的方式进行推证,是存在逻辑问题的。上式中的右半部分,可以表示两种意思:其一为两个集合进行相加或相减运算;其二为两个集合中的

5、元素进行相加或相减运算3。 如果是前者,则只能够进行差运算,所以,两个集合之间存在包含关系,以如下公式为例: f (x)g (x)dx ? f (x)dxg (x)dx 假设 H (x)=F(x)G (x)f (x)g (x)dx 那么,可以通过 H ( x)=F (x)G (x)=f (x)g (x) (1) 得到 H (x)f (x)dxg (x)dx 所以,需要证明下述两个公式中,有一个是成立的即可: H (x)f (x)dx (2) H (x)g (x)dx (3) 由于两者的推理方式基本相同,因此,本文以(2)式为例。如果假设公式(2)是成立的,便能够得出 H (x)=f (x),但

6、其和公式(1)存在偏差;如果假设上述两个公式都成立,便能够得出 H (x)=f(x)=g (x),该结果也是不成立的,所以,无法得出命题开始提出的包含结论。 如果是后者,也同样不能进行相应的推证与运算。所以说,通过不定积分定义,是无法实现其性质推证的。现阶段,很多情况下都选择默认前者,但其在概念上并不合理,在理解过程中也存在一些问题。 三、运算过程问题 在对不定积分进行求解时,运用上述定义,也会产生一些运算方面的问题,比较典型的便是处理积分常数 C。 举例来说,计算ex sinx dx。该题的解题过程如下: 由于 ex sinx dx = ex sinx - ex conx - ex sinx

7、 dx (4) 那么 2ex sinx dx = ex sinx - ex conx + C1 (5) 则有 ex sinx dx =1/2 ex(sinx-conx) + C (6) 在公式(4)中,公式两边所表示的函数集合是一个,两者之间的并也还是这个集合,那么,便与公式(5)中的“2”存在矛盾,而且,公式(5)中的常数 C1 没有办法解释。在实际运算过程中,还存在很多相似问题,这也为不定积分的运算带来了问题,所以,需要对定义进行改进。 四、结论 改进后的定义如下:在区间中,f (x)的不定积分是这一区间中的随意一个原函数,将其表示成为f (x)dx。如果 F(x)属于f (x)中的原函数

8、之一,那么便有公式: f (x)dx = F(x)+C 以改进之后的定义为依托,可以在很大程度上解决上述推理和运算过程中的问题,避免原定义中的缺陷,在学习不定积分的相关知识时,其内容逻辑更加合理,条理更加清晰,学习难度大大降低。在证明不定积分性质的过程中,只需要运用改进之后的定义,求导函数即可;在计算例题的过程中,只需要将公式(5)中,通过两个原函数差一常数的方式,便可以解释 C1 的来源。由此可见,在对不定积分原有定义进行改进之后,便可以将性质与运算等方面的问题有效解决。 参考文献: 1邓小宇.浅谈一元函数不定积分的计算方法与技巧J.科教文汇(下旬刊) ,2011,09:9697 2高大维,冯世强,陈友军等.不定积分与定积分第二类换元法的讨论J.高等函授学报(自然科学版) ,2011,04:2022. 3赵娜,李坤花.一元函数不定积分的重要性及计算方法探讨J.漯河职业技术学院学报,2010,05:100102.

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。