ImageVerifierCode 换一换
格式:PPT , 页数:69 ,大小:4.30MB ,
资源ID:1600068      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1600068.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(现代控制理论课件7-wzj第四章-李雅普诺夫稳定性.ppt)为本站会员(99****p)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

现代控制理论课件7-wzj第四章-李雅普诺夫稳定性.ppt

1、v 4.1 概述v 4.2 李亚普诺夫第二法的概述v 4.3 李亚普诺夫稳定性判据v 4.4 线性定常系统的李亚普诺夫稳定性分析v 小结第 4章 李亚普诺夫稳定性分析* 1是指系统在零输入条件下通过其内部状态变化所定义的内部稳定性,即 状态稳定状态稳定 。内部稳定性不但适用于线性系统,而且也适用于非线性系统。对于同一个线性系统,只有在满足一定的条件下两种定义才具有等价性。 稳定性是系统本身的一种特性, 只和系统本身的结构和参数有关,与输入 -输出无关。4.1 引言稳定性稳定性 是控制系统能否正常工作的前提条件。控制系统的稳定性通常有两种定义方式:现代控制理论 第 4章 李亚普诺夫稳定性分析 外

2、部稳定性外部稳定性是指系统在零初始条件下通过其外部状态,即由系统的输入和输出两者关系所定义的外部稳定性,即 有界输入有界输入有界输出稳定有界输出稳定 。外部稳定性只适用于线性系统。 内部稳定性内部稳定性* 2研究系统稳定性的方法: 李亚普诺夫第一法李亚普诺夫第一法现代控制理论 第 4章 李亚普诺夫稳定性分析经典控制理论: 劳斯 -胡尔维茨稳定性判据乃奎斯特稳定性判据现代控制理论:李亚普诺夫稳定性 第一法第二法李亚普诺夫第一法又称间接法。它的基本思路是通过系统状态方程的解来判别系统的稳定性。对于线性定常系统,只需解出特征方程的根即可作出稳定性判断;对于非线性不很严重的系统,则可通过线性化处理,取

3、其一次近似得到线性化方程,然后再根据其特征根来判断系统的稳定性。* 3以上讨论的都是指系统的状态稳定性,或称内部稳定性。但从工程意义上看,更重视系统的输出稳定性。现代控制理论 第 4章 李亚普诺夫稳定性分析线性定常系统 平衡状态 渐进稳定的充要条件是系统矩阵 A的所有特征值均具有 负实部 。线性系统状态稳定性判据线性系统状态稳定性判据1、线性系统的稳定判据* 4现代控制理论 第 4章 李亚普诺夫稳定性分析线性定常系统 输出稳定的充要条件是其传递函数 的极点全部位于 s的左半平面。线性系统输出稳定性判据线性系统输出稳定性判据如果系统对于有界输入 u所引起的输出 y是有界的,则称系统为输出稳定。例

4、题 4.1 系统的状态空间描述为试分析系统的状态稳定性与输出稳定性。* 5现代控制理论 第 4章 李亚普诺夫稳定性分析解 : (1)由 A阵的特征方程可得特征值 , 。故系统的状态不是渐近稳定的。(2)由系统的传递函数可见传递函数的极点 位于 s的左半平面,故系统输出稳定。这是因为具有正实部的特征值 被系统的零点 对消了,所以在系统的输入输出特性中没被表现出来。由此可见, 只有当系统的传递函数 W(s) 不出现零、极点对消现象,并且矩阵 A的特征值与系统传递函数 W(s) 的极点相同,此时系统的状态稳定性才与其输出稳定性一致。* 6 李亚普诺夫第二法李亚普诺夫第二法现代控制理论 第 4章 李亚

5、普诺夫稳定性分析李亚普诺夫第二方法又称直接法。它的基本思想不是通过求解系统的运动方程,而是借助了一个李亚普诺夫函数来直接对系统平衡状态的稳定性做出判断,它是从能量观点进行稳定性分析的。如果一个系统被激励后,其储存的能量随着时间的推移逐渐衰减,到达平衡状态时,能量将达最小值,那么,这个平衡状态是渐近稳定的。反之,如果系统不断地从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的。如果系统的储能既不增加,也不消耗,那么这个平衡状态就是李亚普诺夫意义下的稳定。* 74.2 李亚普诺夫第二法的概述1892年俄国学者李亚普诺夫发表了 运动稳定性一般问题 ,最早建立了运动稳定性的一般理论,并把分析常

6、微分方程组稳定性的全部方法归纳为两类。第一类方法先求出常微分方程组的解,而后分析其解运动的稳定性,称为间接方法;第二类方法不必求解常微分方程组,而是提供出解运动稳定性的信息,称为直接方法,它是从能量观点提供了判别所有系统稳定性的方法。现代控制理论 第 4章 李亚普诺夫稳定性分析* 8现代控制理论 第 4章 李亚普诺夫稳定性分析稳定性是指系统受外界干扰后,平衡状态被破坏,但当干扰去掉后,系统仍能自动地回到平衡状态下继续工作。具有稳定性的系统称为稳定系统,不具有稳定性的系统称为不稳定系统。1、稳定性一、物理基础 稳定性是系统本身固有的属性。稳定性是系统本身固有的属性。 线性自动控制系统稳定的充要条件:系统特征方程的线性自动控制系统稳定的充要条件:系统特征方程的全部根是负实部或实部为负的复数,即全部根在复平全部根是负实部或实部为负的复数,即全部根在复平面的左半平面。面的左半平面。* 9现代控制理论 第 4章 李亚普诺夫稳定性分析2、系统的平衡状态设系统为 ,其中 ,则 ,对于该系统,如果存在对所有时间 t都满足 的状态 ,即 ,则把 叫做系统的平衡状态。对于线性定常系统 而言,其平衡状态满足,若 A是非奇异矩阵,则只有 ,即对线性系统而言平衡状态只有一个,在坐标原点;反之,则有无限多个平衡状态。对于非线性系统而言,平衡状态不只一个。* 10

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。