ImageVerifierCode 换一换
格式:DOC , 页数:13 ,大小:216.78KB ,
资源ID:1688330      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-1688330.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(信号处理原理练习题.doc)为本站会员(h****)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

信号处理原理练习题.doc

1、填空题:2时间函数 f(t)与它的 FT 频谱称为-,记作-。 (傅立叶变换对,记作:f (t) F (w ))3两个函数的傅立叶变换与逆傅立叶变换都是相等的,这两个函数-是相等的。(一定)4信号的傅立叶变换存在的充分条件是信号 f(t)-。 (绝对可积)5用数学表达式描述信号 f (t)的 FT 的线性性和叠加性,线性性的描述为 Fk f (t)=-.。叠加性的描述为 Ff (t)+g (t)=-.。( kFf (t), Ff(t)+Fg (t) )7傅立叶变换以及傅立叶逆变换的定义中分别引入了核函数,这两个核函数是-的。 (共轭对称)8傅立叶变换与傅立叶逆变换的本质是一致的,但是在数学形式

2、上有着某中关系,这种关系称为-,数学表示为-。 (对偶性, )(f2)t(F)9FT 的尺度变换特性又称为-,对它的描述是-。 (压扩特性,时域压缩对应频域扩展,时域扩展对应频域压缩)10信号的时域平移不影响信号的 FT 的-,但是会影响到-。 (幅度谱 频率谱)11所谓频谱搬移特性是指时间域信号乘一个复指数信号后的频谱相当于原来的频谱搬移到复指数信号的 处。 (频率位置)12.如果一个信号是偶函数那么它的反褶 它本身,如果一个信号是奇函数那么至少经过 次反褶后才能还原为原始信号。 (是 2)13要保证信号抽样后的离散时间信号没有失真的恢复原始时间连续信号,或者说要保证信号的抽样不导致任何信号

3、丢失,必须满足两个条件:1信号必须是 的。2采样频率至少是信号 的 2 倍。(频带受限, 最高频率)16称 X(n)与 X(z)是一对 。 (Z 变换对)18一个序列是因果序列的充分必要条件是: ,一个序列是反因果序列的充分必要条件是 。(x (n)=x (n)u (n) , x (n)=x (n)u (-n-1) 19离散时间系统是指输入、输出都是 的系统。 (序列)20在没有激励的情况下,系统的响应称为 。 (零输入响应)21离散系统的传递函数定义式是:-。 (H(z )=Y(z) / X(z) )22.。系统的零状态响应等于激励与- 之间的卷积。( 单位冲击响应)23只要输入有界,则输出

4、一定有界的系统称为-。 (稳定系统)24输出的变化不领先于输入的变化的系统称为-。 (因果系统)29双边序列 ZT 的 ROC 是以模的大小相邻的两个极点的 为半径的两个圆所形成的环形区域。 (模)30左边序列的 ROC 是以其模最 的非零极点的模为半径的圆内部的区域。 ( 小 )证明题:2 已知 Ff (t)=2 / j,f ( t )是奇函数,请证明 F(1/ t) )(fj.。 (提示,根据傅立叶变换与逆傅立叶变换之间的对偶性)证明过程: 线性性,因为 Ff (t)=2 / j,所以 F (j /2 )f ( t )=1 / 根据 FT 对偶性,可得F(1/t )= )(f2/j= )(

5、fj)(fj一、判断题1)有些信号没有有傅立叶变换存在 正确2)实信号的傅立叶变换的相位频谱是偶函数。 错误3)信号在频域中压缩等于在时域中压缩 。 错误 4)直流信号的傅立叶频谱是阶跃函数。 错误 5)按照抽样定理,抽样信号的频率比抽样频率的一半要大。 错误 6)信号时移只会对幅度谱有影响。 错误 二、选择题1)下列说法正确的是:da 直流信号的傅立叶频谱是阶跃函数b )(t在 t=0 时,取值为零c 复指数频谱中负频率出现是数学运算的结果,有相应的物理意义。D ( )t)=12)对于傅立叶变换来说,下列哪个说法是错误的:ca 信号在时域上是非周期连续的,则其频谱也是非周期连续的b 信号在时

6、域上周期离散,则其频谱也是周期离散的c 信号的频谱不是周期连续的,那么信号在时域也不周期连续d 信号在 时域非周期离散,则其频谱是周期连续的3)下列说法不正确的是:b c da 单位冲激函数的频谱等于常数b 直流信号的频谱是阶跃函数c 信号时移会使其幅度谱发生变化d 可以同时压缩信号的等效脉宽和等效带宽4)下列说法正确的是:ba 非因果信号在时间零点之前不可能有值b通过与三角函数相乘可以使信号的频谱发生搬移c频谱是阶跃函数的信号一定是直流信号a 信号的等效脉宽和等效带宽可以被同时压缩三、填空题7)若信号在时域被压缩,则其频谱会- 。 (扩展)11)傅立叶正变换的变换核函数为-( tje)14)

7、信号的时域平移不影响信号的 FT 的-,但是会影响到 -。 (幅度谱 相位谱)18)偶周期信号的傅立叶级数中只有直流项和-(余弦项)19)奇周期信号的傅立叶级数中只有 正弦项 。一、 证明题1、若 f(t)= )(F,则 0)(0tjeFtf证明:因为 f( 0t)= )t(f0tjdt令x= 0t则 )t(f0=Ff (x)= )x(f)t(j0edx= 0tjejdx= F0tje3证明:复信号的虚实分量满足:(1) )(21)(*Ftf(2) )()(*jtfi 证明: 1) )(tf 2)(*tft2 )(tf+ )(*tf1F2) )(tfi jtft2)(*1j )(tf )(*t

8、f)21*Fj二、 计算题1根据以下频谱搬移特性求取信号 g (t)=cos2t 的 FT,f (t) )btcos(= )()(21bF解:令 f(t)=1,那么 = 根据频谱搬移特性, f (t) )2cos(t= )2()(1F= )()(= 22已知 )(Ftf,且有 )(1= )()00F,试求 -1 )(1F解:根据 FT 变换的线性性、频域卷积定理,卷积的分配律, 函数频移特性, t0cos的 FT(由直流信号的 FT,FT 的搬移特性和线性性、欧拉公式等求出))(*)(0F0)()(01)(*0F)(01 )(0F2)(1 0tfcos0t)(3试求信号 )t(ue)t(fa傅

9、立叶变换的频谱函数 )(F解: dFtjtde0tjat)j(ja14. 设矩形脉冲信号 G(t)的脉幅为 E,脉宽为 ,求信号 )cos()(0ttGf的傅立叶变换。解:根据定义可求出G (t) = )2()(Sat根据频谱搬移特性 f (t) )btcos(= )()(21bF,G (t) )(0t= 2)(2 00SaESaE 六、1 1 画出 Sa(t)及其 FT 的波形2 2 画出矩形信号 G(t)及其 FT 的波形七、问答题2奇周期信号(周期为 1T)的傅立叶级数中是否含有余弦项?为什么。解:不会含有余弦项,因为:根据傅立叶级数的定义,余弦分量的系数为:na12Tdtntft10)

10、cos()1由于 )(tf是奇函数,所以 (ttf还是奇函数,于是 0na。即,周期奇函数的傅立叶级数中不含余弦项。3设 f(t)为一连续 的时间信号,试说明下列各种信号运算有什么不同?(1) )().()Ttutfg(2) *(3) n)()nTtg(4) n)(*)tf(5) Ttdt(6) n)()ntfdt解:(1) 截取 在 0 T 之间的波形,得到一个片段(表示为新信号 )(tg。(2)将信号 )(tg搬移到 nT 处,即得 )(nTtg。(3)将信号 以 T 为周期进行重复(或者延拓)(4)对信号 )(tf以 T 为周期进行理想采样,得到一系列冲击值。(5)筛选出信号 在 nT

11、处的值 )(nTf(6)把信号 )(tf在所有时间值为 T 的整数倍处的取值加起来,即 n)(Tf一、判断题(1)如果 x(n)是偶对称序列,则 X(z)=X(z -1)。 正确(2)时不变系统的响应与激励施加的时刻有关。 错误(3)nx(n)的 Z 变换结果是-zX(z)。 错误(4)单位阶跃序列的 Z 变换结果是常数 错误(5)序列 ZT 的 ROC 是以极点为边界的 正确二、填空题3一个序列是因果序列的充分必要条件是: x (n)=x(n).u(n) ,一个序列是反因果序列的充分必要条件是 x (n)=x(n).u(-n-1) 。4离散时间系统是指输入、输出都是 序列 的系统。 5在没有

12、激励的情况下,系统的响应称为 零输入响应 。 6离散系统的传递函数定义式是:-。H (z )=Y(z) / X(z) 7.。系统的零状态响应等于激励与- 之间的卷积。 (其单位冲激响应)8只要输入有界,则输出一定有界的系统称为-。 (稳定系统) 9输出的变化不领先于输入的变化的系统称为-。 因果系统14双边序列 ZT 的 ROC 是以模的大小相邻的两个极点的 模长 为半径的两个圆所形成的环形区域。 15左边序列的 ROC 是以其模最 小 的非零极点的模为半径的圆内部的区域。17 )(1nuZ-。 1z ( |z|1)18 单位阶跃序列的 Z 变换为-。 z (|z|1)19、序列 )(nx为右

13、边序列,其 Z 变换为 )(zX向右平移 5 个单位后再求取单边 Z 变换,结果是 5Z)(zX。 20、已知 Z ux= ,序列向左平移 5 个单位后再求取单边 Z 变换,结果是 )(5nuxZ405)()(nnzxzX。 21、 )(2 13z。22、已知 X(z)= 2)(,且序列 x(n)为因果序列,那么 x(n)= )(21nu。23、已知左边序列 x(n)的 Z 变换是 )(10)(zzX,那么其收敛域为|z|1。三、计算题1 (1)求取 X(z)= )1|(5.0.12zz的 IZT解:上式可化为:)5.0(1)(2zz得: .2AzX可求出: 12A于是,可以将 )(zX展开为

14、: 5.01由于 )(nx序列是因果的( |z) ,所以 )(.2().2nunu2已知)1(3)(23zzZzX求其 IZT。解:根据 ROC 性质,其 IZT 的序列 x(n)是一个右边序列,根据 ZT 的定义,序列的ZT 用级数表示应该是 z 的升幂或 z 的降幂,因此用长除法求解时要把被除式和除式都按z 的降幂排列。 3211232123 9794494zzzz3设一离散系统的差分方程为: )(1()nbxayn,求(1) (1) 该系统的传递函数 H(z)(2) (2) 令 a= -0.7, b=0.02,求输入为 u(n)时的系统的零状态响应 y(n)的 Z变换 Y(z)解:(1)

15、 (1) 将差分方程两边取 Z 变换,并利用位移特性,得到)()(1zbXYaz所以, azzH1)((2) (2) 差分方程可化为 )(02.)(7.0)(nuny, 于是对方程两边分别取 Z 变换,可得 12.)(7.0)(1zYz即 )(7.0)(2zz4一离散系统的差分方程为 )(1()nxbyn施加的激励为 )(uax,已知系统初始状态(起始值)为 y(-1)=0,求响应 y(n).解:对系统差分方程式两边施加 ZT,得到)(1()(1zXzyYbz代入起始值 y(-1)=0,有1)()(bzXY激励 得代 入 上 式为的 ,|,|)()()( azzXZTnuax bzabzY)(

16、1)()(2求逆变换得到:)()1)(1nubanyn这就是系统的响应。5求离散系统 y(n)+0.2y(n-1)-0.24y(n-2)=x(n)+x(n-1)的传递函数 H(z) ;说明其收敛域及系统稳定性;求系统的单位冲激响应和单位阶跃响应。解:对系统差分方程两边限 ZT,注意到 H(z)的定义是针对零状态和因果序列的,有)()(24.0)(.)( 11 zXzYzzY )6.0(4.)(21XH该函数有两个一阶零点 ,6.0,4.,021pz和 两 个 一 阶 级 极 点因 此 系 统 是 稳 定 的由 于 极 点 均 在 单 位 圆 内 ,。又当 z时,H(z)=1, 所以 H(Z)的收敛域包括 z=应该为 0.6|z|。系统是稳定的因素系统。 6.04.1)6.0(4.)( zzzH ).|(.1)( )60(4)nunhn求系统的单位阶跃响应时,而用 ZT 法求解。若 x(n)=u(n),则 X(z)= ),1|(z

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。