1、糖原的合成与分解Glycogenesis and Glycogenolysis,糖 原 (glycogen)是动物体内糖的储存形式之一,是机体能迅速动用的能量储备。,糖原的定义:,糖原储存的主要器官及其生理意义:,1. 葡萄糖单元以-1,4-糖苷键形成长链。2. 约10个葡萄糖单元处形成分枝,分枝处葡萄糖以-1,6-糖苷键连接,分支增加,溶解度增加。3. 每条链都终止于一个非还原端.非还原端增多,以利于其被酶分解。,糖原的结构特点及其意义:,一、糖原的合成代谢主要在肝和肌组织中进行,合成部位:,糖原的合成(glycogenesis) 指由葡萄糖合成糖原的过程。,组织定位:主要在肝脏、肌肉细胞定
2、位:胞浆,1.葡萄糖磷酸化生成葡萄糖-6-磷酸,葡萄糖,葡萄糖-6-磷酸,糖原合成途径:,2.葡萄糖-6-磷酸转变成葡萄糖-1-磷酸,UDPG可看作“活性葡萄糖”,在体内充作葡萄糖供体。,3.葡萄糖-1-磷酸转变成尿苷二磷酸葡萄糖,4.-1,4-糖苷键式结合,糖原n 为原有的细胞内的较小糖原分子,称为糖原引物(primer), 作为UDPG 上葡萄糖基的接受体。,.糖原分枝的形成,近来人们在糖原分子的核心发现了一种名为glycogenin的蛋白质。Glycogenin可对其自身进行共价修饰,将UDP-葡萄糖分子的C1结合到其酶分子的酪氨酸残基上,从而使它糖基化。这个结合上去的葡萄糖分子即成为糖
3、原合成时的引物。,糖原合成过程中作为引物的第一个糖原分子从何而来?,二、肝糖原分解产物葡萄糖可补充血糖,亚细胞定位:胞浆,肝糖元的分解过程:,1.糖原的磷酸解,糖原分解 (glycogenolysis )习惯上指肝糖原分解成为葡萄糖的过程。,2.脱枝酶的作用,转移葡萄糖残基水解-1,6-糖苷键,脱枝酶,(debranching enzyme),磷酸化酶,转移酶活性,-1,6糖苷酶活性,在几个酶的共同作用下,最终产物中约85%为1-磷酸葡萄糖,15%为游离葡萄糖。,3.葡萄糖-1-磷酸转变成葡萄糖-6-磷酸,4.葡萄糖-6-磷酸 水解生成葡萄糖,葡萄糖-6-磷酸酶只存在于肝、肾中,而不存在于肌中
4、。所以只有肝和肾可补充血糖;而肌糖原不能分解成葡萄糖,只能进行糖酵解或有氧氧化。,肌糖原的分解,肌糖原分解的前三步反应与肝糖原分解过程相同,但是生成6-磷酸葡萄糖之后,由于肌肉组织中不存在葡萄糖-6-磷酸酶,所以生成的6-磷酸葡萄糖不能转变成葡萄糖释放入血,提供血糖,而只能进入酵解途径进一步代谢。肌糖原的分解与合成与乳酸循环有关。,G-6-P的代谢去路:,G(补充血糖),G-6-P,F-6-P(进入酵解途径),G-1-P,Gn(合成糖原),UDPG,6-磷酸葡萄糖内酯(进入磷酸戊糖途径),葡萄糖醛酸(进入葡萄糖醛酸途径),小结,反应部位:胞浆,糖原的合成与分解总图,糖原的合成与分解是分别通过两
5、条不同途径进行的。这种合成与分解循两条不同途径进行的现象,是生物体内的普遍规律。这样才能进行精细的调节。当糖原合成途径活跃时,分解途径则被抑制,才能有效地合成糖原;反之亦然。,三、糖原合成与分解受到彼此相反的调节,它们的快速调节有共价修饰和变构调节二种方式。它们都以活性、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,这两种关键酶的重要特点:,(一)糖原磷酸化酶是糖原分解的关键酶,糖原磷酸化酶的共价修饰调节,(二)糖原合酶是糖原合成的关键酶,糖原合酶的共价修饰调节,磷酸化酶b激酶,糖原合酶,糖原合酶-P,磷酸化酶b,磷酸化酶a-P,磷蛋白磷酸酶抑制剂,两种酶磷酸化或去
6、磷酸化后活性变化相反;此调节为酶促反应,调节速度快;调节有级联放大作用,效率高;受激素调节。,糖原磷酸化酶合糖原合酶的共价修饰调节特点:,肌肉内糖原代谢的二个关键酶的调节与肝糖原不同:,在糖原分解代谢时肝主要受胰高血糖素的调节,而肌肉主要受肾上腺素调节。 肌肉内糖原合酶及磷酸化酶的变构效应物主要为AMP、ATP及6-磷酸葡萄糖。,调节小结:,双向调控:对合成酶系与分解酶系分别进行调节,如加强合成则减弱分解,或反之。,双重调节:别构调节和共价修饰调节。,肝糖原和肌糖原代谢调节各有特点:如分解肝糖原的激素主要为胰高血糖素,分解肌糖原的激素主要为肾上腺素。,关键酶调节上存在级联效应。,关键酶都以活性
7、、无(低)活性二种形式存在,二种形式之间可通过磷酸化和去磷酸化而相互转变。,糖原积累症是由先天性酶缺陷所致,糖原累积症(glycogen storage diseases)是一类遗传性代谢病,其特点为体内某些器官组织中有大量糖原堆积。引起糖原累积症的原因是患者先天性缺乏与糖原代谢有关的酶类。,糖原积累症分型,血糖及其调节The Definition, Level and Regulation of Blood Glucose,血糖,指血液中的葡萄糖。,血糖水平,即血糖浓度。,血糖及血糖水平的概念:,正常血糖浓度 :3.896.11mmol/L,血糖水平恒定的生理意义:,保证重要组织器官的能量供
8、应,特别是某些依赖葡萄糖供能的组织器官。,脑组织不能利用脂酸,正常情况下主要依赖葡萄糖供能;红细胞没有线粒体,完全通过糖酵解获能;骨髓及神经组织代谢活跃,经常利用葡萄糖供能。,血糖,一、血糖的来源和去路是相对平衡的,二、血糖水平的平衡主要是受到激素调节,血糖水平保持恒定是糖、脂肪、氨基酸代谢协调的结果,也是肝、肌、脂肪组织等各器官组织代谢协调的结果。机体的各种代谢以及各器官之间能这样精确协调,以适应能量、燃料供求的变化,主要依靠激素的调节。酶水平的调节是最基本的调节方式和基础。,主要调节激素,降低血糖:胰岛素(insulin),升高血糖:,胰高血糖素(glucagon)糖皮质激素肾上腺素,胰岛
9、素(Insulin)是体内唯一的降低血糖的激素,也是唯一同时促进糖原、脂肪、蛋白质合成的激素。胰岛素的分泌受血糖控制,血糖升高立即引起胰岛素分泌;血糖降低,分泌即减少。,(一)胰岛素是体内唯一降低血糖的激素,促进肌、脂肪组织等的细胞膜葡萄糖载体将葡萄糖转运入细胞。通过增强磷酸二酯酶活性,降低cAMP水平,从而使糖原合酶活性增强、磷酸化酶活性降低,加速糖原合成、抑制糖原分解。通过激活丙酮酸脱氢酶磷酸酶而使丙酮酸脱氢酶激活,加速丙酮酸氧化为乙酰CoA,从而加快糖的有氧氧化。抑制肝内糖异生。这是通过抑制磷酸烯醇式丙酮酸羧激酶的合成以及促进氨基酸进入肌组织并合成蛋白质,减少肝糖异生的原料。通过抑制脂肪
10、组织内的激素敏感性脂肪酶,可减缓脂肪动员的速率。,胰岛素的作用机制:,(二)机体在不同状态下有相应的升高血糖的激素,正常人体内存在一套精细的调节糖代谢的机制,在一次性食入大量葡萄糖后,血糖水平不会出现大的波动和持续升高。,人体对摄入的葡萄糖具有很大的耐受能力的现象称为葡萄糖耐量(glucose tolerence)。,三、血糖水平异常及糖尿病是最常见的糖代谢紊乱,临床上因糖代谢障碍可发生血糖水平紊乱,常见有以下两种类型:,低血糖 (hypoglycemia) 高血糖 (hyperglycemia),(一)低血糖是指血糖浓度低于3.0mmol/L,低血糖影响脑的正常功能,因为脑细胞所需要的能量主
11、要来自葡萄糖的氧化。当血糖水平过低时,就会影响脑细胞的功能,从而出现头晕、倦怠无力、心悸等,严重时出现昏迷,称为低血糖休克。如不及时给病人静脉补充葡萄糖,可导致死亡。,低血糖的危害:,胰性(胰岛-细胞机能亢进、胰岛-细胞机能低下等);肝性(肝癌、糖原累积病等);内分泌异常(垂体机能低下、肾上腺皮质机能低下等);肿瘤(胃癌等);饥饿或不能进食者等。,低血糖的原因:,(二)高血糖是指空腹血糖高于6.9mmol/L,临床上将空腹血糖浓度高于5.66.9mmol/L 称为高血糖(hyperglycemia)。当血糖浓度超过了肾小管的重吸收能力(肾糖阈),则可出现糖尿。持续性高血糖和糖尿,特别是空腹血糖
12、和糖耐量曲线高于正常范围,主要见于糖尿病(diabetes mellitus)。,糖尿病;遗传性胰岛素受体缺陷某些慢性肾炎、肾病综合症等;生理性高血糖和糖尿。,高血糖的原因:,(三)糖尿病是最常见的糖代谢紊乱疾病,糖尿病是一种因部分或完全胰岛素缺失、或细胞胰岛素受体减少、或受体敏感性降低导致的疾病,它是除了肥胖症之外人类最常见的内分泌紊乱性疾病。,型(胰岛素依赖型)型(非胰岛素依赖型),糖尿病可分为二型:,糖的合成代谢,1、葡糖糖合成(糖异生作用)2、蔗糖的合成3、糖原的合成4、淀粉的合成,(1)糖异生作用的概念和场所(2)糖异生的途径(3)糖异生的前体(4)糖异生的意义(5) Cori循环(
13、6)糖异生和糖酵解的代谢协调控制,1、糖异生作用,(1)糖异生作用的概念和场所,葡萄糖的异生作用是指由非糖物质转变成葡萄糖的过程,是葡糖糖合成方式之一。 哺乳动物葡萄糖异生作用是在肝脏细胞中进行的,高等植物主要是发生在油料作物种子萌发时,贮存的脂肪向糖转变。 由异生的葡萄糖合成糖原的过程称为糖原异生作用。,糖异生途径:丙酮酸 葡萄糖,但不是酵解途径的简单逆转。 在酵解中,己糖激酶,磷酸果糖激酶和丙酮酸激酶所催化的反应是不可逆的。在糖异生中,这三步反应由不同的酶催化,由四步反应实现克服,其余7步反应就是是酵解的逆反应。,(2)糖异生作用途径,糖异生途径:丙酮酸 葡萄糖,,(2)糖异生作用途径,限
14、速第一步:丙酮酸 磷酸烯醇式丙酮酸,草酰乙酸转化为磷酸烯醇式丙酮酸 草酰乙酸经磷酸烯醇式丙酮酸羧化激酶催化生成磷酸烯醇式丙酮酸。该脱羧反用GTP作为高能磷酰基的供体,在体内是不可逆的,但在体外,分离的磷酸烯醇式丙酮酸羧化激酶却可以催化该反应的逆反应。, 注意:丙酮酸羧化酶存在于线粒体中,丙酮酸进入线粒体后生成草酰乙酸;在线粒体内草酰乙酸转变成苹果酸后转运到胞浆细胞浆中的苹果酸又被苹果酸脱氢酶再氧化成草酰乙酸,然后再转变成PEP。NAD+是氢受体。,线粒体中NADH + H+ + 草酰乙酸-NAD+ + 苹果酸 G0= -29.7kJ/mol 胞浆中苹果酸 + NAD+ - 草酰乙酸 + NAD
15、H + H+ G0= +29.7 kJ/mol,果糖-1,6-二磷酸水解生成果糖-6-磷酸 酵解过程中的F-6-P生成F-1,6-2P反应是不可逆反应。所以,糖异生途径使用F-1,6-2P酶催化F-1,6-2P水解生成F-6-P,反应释放出大量的自由能,反应也是不可逆的。,限速第二步:果糖-1,6-二磷酸 果糖-6-磷酸,葡萄糖-6-磷酸水解生成葡萄糖 F-6-P沿酵解的逆反应异构化生成G-6-P,由葡G-6-P酶催化其水解为葡萄糖和无机磷酸,该水解反应不可逆。,限速第三步:葡糖糖-6-磷酸 葡糖糖,从以上过程可以看出,糖异生是个需能过程,由两分子丙酮酸合成一分子葡萄糖需要4分子ATP和2 分
16、子GTP,同时还需要两分子NADH, 糖异生总反应方程式为:2丙酮酸4ATP2GTP2NADH2H+6H2O 葡萄糖4ADP2GDP6Pi2NAD+,糖异生等于用ATPGTP各2分子克服由两分子丙酮酸形成两分子高能磷酸烯醇式丙酮酸的能障,用2分子ATP进行磷酸甘油激酶催化反应的可逆反应。 葡萄糖经糖酵解转化为两分子丙酮酸净生成2分子ATP,而由两分子丙酮酸经糖异生途径合成一分子葡萄糖却消耗了6个高能键,也就是说,糖异生比酵解净生成的ATP多用了4分子ATP-储存能量。,(3)糖异生的前体凡是能生成丙酮酸的物质都可以变成葡萄糖三羧酸循环的中间物,柠檬酸,异柠檬酸,-酮戊二酸,琥珀酸,延胡索酸和苹
17、果酸都可以转变为草酰乙酸而进入糖异生途径。乙酰CoA不能作为糖异生的前体,它不能转化成丙酮酸,因为丙酮酸脱氢酶反应是不可逆的,大多数氨基酸是生糖氨基酸,如丙氨酸,谷氨酸,天冬氨酸,丝氨酸,半胱氨酸,甘氨酸,精氨酸,组氨酸,苏氨酸,脯氨酸,谷氨酰胺,天冬酰胺,甲硫氨酸,缬氨酸,它们可转变成丙酮酸,以及-酮戊二酸,草酰乙酸等三羧酸循环中间产物参加糖异生途径。,糖异生具有重要的生理意义,在饥饿、剧烈运动造成糖原下降后,血糖浓度降低,糖异生可使酵解产生的乳酸、脂肪分解的甘油以及大部分氨基酸等代谢中间物重新生成糖。这对于维持血糖浓度,满足组织(特别是脑和红细胞)对糖的需要是十分重要的。,(4)糖异生作用
18、意义,(5)Cori循环 当骨骼肌剧烈运动时,呼吸不能向组织中运送足够的氧使葡萄糖完全氧化。6-P-G转换成丙酮酸的速度大于丙酮酸进一步由三羧酸循环完全氧化的速度。这时丙酮酸倾向于还原成乳酸。乳酸释放进入血液,再迅速进入肝。 进入肝脏的乳酸再氧化成丙酮酸。丙酮酸通过糖异生再生成葡萄糖。葡萄糖再回到血液。骨骼肌又将葡萄糖摄入,再产生糖原储备。,Cori 循环 可立氏循环,这条途径在肌肉剧烈运动后的恢复过程中特别活跃,是为了重建糖原储备。,(6)糖异生和糖酵解作用的代谢协调控制 糖酵解和糖异生都是在胞浆中进行但是方向相反,它们的控制必须是交互或是往复式的。换句话说,细胞激活其中一条途径必定抑制另一
19、条途径。,糖酵解的控制主要是通过调节三个强放能反应进行的。这三个强放能反应由己糖激酶,磷酸果糖激酶和丙酮酸激酶控制。 在糖异生中,这三个反应的相反反应也是强放能的,由葡萄糖-6-磷酸酶,果糖1,6-二磷酸酶,以及丙酮酸羧化酶和磷酸烯醇丙酮酸羧化激酶控制,糖异生和糖酵解作用的代谢协调控制的调节方式有: 别构调节 无效循环 激素调节,别构调节:别构酶效应物在协调控制中的作用 高浓度6-P-G抑制己糖激酶,而激活葡萄糖6-磷酸酶,从而抑制酵解,促进糖异生。 糖酵解和糖异生共同关键控制点是6-P-F与1,6-2P-F的转化。其中酵解过程的关键调控酶是磷酸果糖激酶,糖异生的关键调控酶是果糖二磷酸酶。2,
20、6二磷酸果糖对这两个酶的作用相反。,乙酰辅酶A是丙酮酸羧化酶的激活剂,是丙酮酸激酶和丙酮酸脱氢酶的抑制剂。 丙氨酸是糖异生的前体,但对丙酮酸激酶有抑制作用,是该酶的负效应物。 ATP抑制磷酸果糖激酶和丙酮酸激酶的活力,抑制酵解,其后果是同时激活糖异生. 细胞中能荷减少,则酵解加速,糖异生作用减慢.,无效循环 由于酵解与糖异生途径是由不同酶催化的两个相反代谢反应,其条件不一样,一个方向需要ATP参加使底物磷酸化,另一个方向使磷酸化的底物自动水解。结果ATP水解消耗了能量,底物没有变化。这种循环称无效循环。 酵解和糖异生有3个点可能产生无效循环。,激素对糖异生及酵解途径的调控作用 肾上腺素,高血糖
21、素,糖皮质激素可增加磷酸烯醇式丙酮酸羧化激酶及葡萄糖6-磷酸酶的合成,从而促使糖异生作用。 这些激素也可通过cAMP激活特定蛋白激酶,使丙酮酸激酶磷酸化,抑制酶的活性,使酵解受到抑制。 胰岛素可以使磷酸果糖激酶,丙酮酸激酶活性升高,增强酵解。并可使果糖1,6-二磷酸酶活性下降,对抗高血糖素,肾上腺素对糖异生的效应,使糖异生减弱。糖尿病动物的糖异生加强。,2 蔗糖的合成,蔗糖在植物界分布最广,特别是在甘蔗、甜菜、菠萝的汁液中很多。蔗糖不仅是重要的光合作用和高等植物的主要成分,而且是糖类在植物体中 运输的主要形式。 蔗糖在高等植物中的合成主要有两种途径:,(1)蔗糖合成酶合成蔗糖 (2)蔗糖磷酸合
22、成酶,(1)蔗糖合成酶-利用尿苷二磷酸(UDPG)作为葡萄糖给体与果糖和合成蔗糖。而尿苷二磷酸葡糖是葡糖-1-磷酸与尿苷三磷酸(UTP)在UDPG焦磷酸化酶催化下生成。 葡糖-1-磷酸 + UTP - UDPG + PPi PPi + H2O -2Pi,UDPG + 果糖 - 蔗糖 + UDP K(平衡常数)= 8 (pH7.4),蔗糖合成酶,(2)磷酸蔗糖合成酶也利用UDPG作为葡萄糖给体,但果糖部分不是游离果糖,而是果糖磷酸酯,合成产物是蔗糖磷酸酯,再经专一的磷酸酯酶作用脱去磷酸形成蔗糖,被认为是植物合成蔗糖的主要途径。,糖原的合成,在体外,使糖原分解的磷酸化酶可催化逆反应合成糖原。 在体
23、内,糖原合成不是由磷酸化酶催化的。糖原合成中糖基的供体是UDPG( UDP-葡萄糖)而不是G-1-P。 合成与分解采用不同途径更容易满足代谢调节和反应所需能量的要求。,(1)UDP-G合成:在体内, G-1-P在UDP-葡萄糖焦磷酸化酶催化下与UTP反应生成UDP-葡萄糖。反应是可逆的,但由于焦磷酸极易被焦磷酸酶水解成磷酸使反应向右进行。,糖原合成酶催化新的葡萄糖残基加在糖原非还原末端的葡萄糖残基碳4的羟基上,形成-1,4糖苷键。,(2)糖原合成,(3)1,6-糖苷键的形成: 分枝酶从至少11个葡萄糖残基的糖原将末端6个葡萄糖残基转移到较内部的葡萄糖残基6位羟基上,形成具有1,6-糖苷键的新分枝。分枝酶的这个反应为糖原合成酶的反应创造了两个末端。,糖代谢主要途径的相互联系,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。