1、 1.3.1 函数的单调性教学设计一、教学内容分析:函数的单调性是学生在掌握了函数的概念,函数的表示方法等基础知识后,学习的函数的第一个性质,主要刻画了函数在其定义域内某区间上图像(上升或下降)的变化趋势,为进一步学习函数其它性质提供了方法依据,如在研究函数的值域、最大值、最小值等性质中有着重要应用,而且在解决比较数的大小、解不等式、证明不等式、数列的性质等数学问题时也有重要的应用。同时它又是后续研究指数函数、对数函数以及三角函数性质的基础。所以函数的单调性在高中数学中具有核心知识地位和承上启下的重要作用。二、学生学情分析:从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数
2、,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应该是顺理成章的。从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具备了一定的观察事物的能力,积累了一些研究问题的经验,在一定程度上具备了抽象、概括和语言转换能力。本班学生的数学基础和学习能力存在差异,学生在认知过程中主要存在两个方面的困难:第一,把具体的、直观形象的函数单调性的特征抽象出来,用数学的符号语言进行描述,比如把定义域内某区间上“随着 的x增大,相应的函数值 也随着增大” (单调递增)这一特征用)(xf该区间上“任意的 ,都有 ”进行刻画,其中
3、最21)(21xff难理解的是为什么要在区间上“任意”取两个大小不等的 ,1;第二,利用定义证明函数的单调性过程中,对学生在代数2x方面严格推理能力的要求较高,教师应该给以适时的点拨和纠正.三、教学目标设置:(一)知识与技能:1.用准确的数学语言归纳、抽象概括增函数和减函数的定义,并能正确理解单调性的定义;2.利用图像和定义判断函数的单调性,能正确书写单调区间,并能用单调性定义证明函数在给定区间上的单调性;3.培养学生抽象概括能力、类比化归能力及数形结合思想方法的运用能力。(二)过程与方法:1. 通过学生熟悉的现实问题创设情境,引出本节课题函数单调性,同时借助多媒体的直观演示,让学生观察图像(
4、上升?下降?)变化趋势,过渡到在区间上用自变量 x 和相应函数 f(x)的变化进行语言表述;2.设置问题引导学生自主探究、尝试、归纳、总结,师生互相讨论交流,最终形成严格的数学概念;3.形成概念后,引导学生自主探究,通过生生互动,师生互动,达到让学生从多种形式认识概念的本质含义,从而加深学生对概念的理解;巩固练习问题(1)为了加深学生对单调性定义中自变量取值“任意”性的理解,是一个很好的问题;问题(2)的变式题体现了“逆向思维” ,深化对定义的理解;问题(3)通过教师的引导,针对于数学基础较好、思维较为活跃的一部分学生,对判断方法进行适当的深入和拓展,加深学生对单调性定义的更深层次的理解,同时
5、也为在高三阶段利用导函数研究函数的单调性奠定了良好的知识基础;4.知识应用部分,首先师生合作完成用单调性定义证明一个一次函数单调性,让学生初步体会用符号语言刻画单调性的代数描述过程,然后由教师演示实验(教材中的例题 2)让学生直观感知压强和体积的关系,培养了学生数学建模思想和在物理问题中应用数学知识解决问题的能力,最后让学生运用本节课所学知识进行单调性判定和证明,使学生能够学以致用.(三)情感态度与价值观:创设情境引出课题,让学生充分认识到数学源于生活,又能应用于生活,进而激发学生自主学习和主动探究的学习兴趣;在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成
6、对单调性定义的三次认知的提升;在概念应用阶段,通过对定义法证明单调性过程的具体分析,以及证明过程的严格板书,帮助学生掌握用定义证明函数单调性的方法和步骤,培养学生清晰地思维、严谨的数学推理能力;最后先由学生自己独立完成再进行小组合作交流,展示自己用单调性定义证明函数单调性的全过程,培养了学生运用所学知识解决实际问题的能力,增强了学生学好数学的信心.四、重难点:重点:1. 函数单调性的概念;2.判断和证明函数的单调性.难点:理解函数单调性的概念五、教学策略分析:1. 多媒体演示创设情境,让学生通过观察气温变化曲线图的变化趋势,完成对单调性直观上的一种认识,为概念的引入提供了必要性,并让学生带着问
7、题(什么是函数的单调性?)进入新课;2. 问题串引导学生探究式学习法,小组合作和自主探究相结合,问题作引导,引发积极思考;3.实验器材的恰当使用,提高了课堂的趣味性,丰富了学生的直观感受; 4.多媒体展示和学生板演相结合,提高课堂效率的同时兼顾解答的规范性.六、教学过程:(一)创设情境,引入新知第一,先观察一个图形(函数) (通过多媒体给出承德今年 8 月 8 日气温变化曲线图)02468101214161820224510152025303540T( ) (14, 36.8)(4, 25.1)t(h)( )( )( ) , ), )师:同学们和我一起来观察承德今年 8 月 8 日的气温曲线图
8、,如果用函数观点来分析,设时间为 t,温度为 T,这条曲线表达的是关于这两个变量的函数关系吗?为什么?(学生回答,教师结合学生回答追问:如果设时间 t 为自变量,能从图中得出自变量的变化范围吗?师追问:这个函数的定义域及它的对应关系)【设计意图】回归函数定义,教师总结:该曲线反映了气温 T随时间 t 的变化规律,在区间0,24内每给一个时间 t 的值,根据图象都有唯一确定的温度 T 与之对应,是一个函数.师:观察图象,结合已学过的函数观点,你能说出这一天的气温变化规律吗?(学生独立思考 5 秒后回答)预案:当天的最高气温,最低气温及何时达到;某些时段温度升高,某些时段温度降低(师追问:最高气温
9、和最低气温是在什么范围研究的?结合学生回答给以及时评价;如果在定义域内一部分一部分地研究,你又会发现什么规律?学生补充)师:归纳关键点:研究函数性质要在整个定义域内研究;在定义域内的某个区间上,随着时间 t 的增加,对应温度升高、降低的变化规律就是函数的单调性引出课题,板书课题)师: 除了气温在某一范围的变化规律,你还能举出生活中具有单调性质的实例吗?预案:承德橡胶坝水库一年中水位随时间的变化;某段时间学生身高的变化.师归纳:抛开实际背景,从函数观点看,它们都反映了在定义域内的某区间上,随着自变量的变化,函数值变大或变小的规律(即函数的单调性) ;同学们在初中就已学会用文字来描述函数的单调性,
10、这节课我们就来学习一种更为方便的定义形式用符号语言对单调性进行代数刻画.【设计意图】生活情境引入新课,可以激发学生的学习兴趣,让学生感悟数学来源于生活,运用数学知识可以解决生活中的实际问题,并向学生提出这节课的学习目标.(二)探索归纳,建构定义第二,进一步研究观察下列函数图象, (师:根据我们刚刚对“函数单调性的初步讨论” )说出函数的变化规律. (图象见课件)xf)(1)(xf 2xf(学生回答图象变化趋势并描述函数的变化规律,参照学案内容)【设计意图】 1.由图象认识增函数与减函数,直观且易于学生接受;2. 为单调函数定义中关键词“区间上”作铺垫;3.让学生初步体会数形结合的思想.探究一:
11、问题 1:根据上面的描述,对比函数 与 在区间xf)(2)(xf上的变化规律,说出它们的不同点? (学生独立思考 5 秒)(后回答)预案: 函数 在整个定义域上都是增函数, 是在定xf)( 2)(xf义域内的区间 上是增函数0师追问:如果要定义增函数,应该选择在定义域上还是在定义域内的区间上呢?(学生答)师归纳:单调性应与定义域内的区间相对应. 问题 2:请归纳函数 , 在其定义域上和函数xf)(12)(xf在区间 上的共同特征,并试着用符号语言表述“函2)(xf0数 在定义域内某区间 D 上是增函数”.(学生独立思考 5 秒后回答出共同特征后,进入小组合作探究如何用符号语言表述“函数 在定义
12、域内某区间 D 上是增函数”)(xf预案:增函数的共同特征:在定义域内某区间 D 上,函数值随自变量的增大而增大;(此处不同小组进行符号表述,但学生描述可能不准确,如: 在区间 D 上,取两个自变量值 ,当 时,21,x21x有 ,则称函数 在区间 D 上是增函数.))(21xff)(xfy【设计意图】由特殊到一般,归纳得到增函数定义.(此时定义还需进一步完善)第三步:产生认知冲突:讨论:“在函数 的定义域 上,取两个自变量值2)(xf),-( ,由 ,计算得到相应的函数值 ,则称2,1x21 )(21xff函数 在 上是增函数” ,这种说法对吗?为什么?)(f ),-( (学生独立思考 5
13、秒后回答)预案:在定义域 上不是增函数(举反例如 ,),( 31x);在 上 取特殊值; 取特殊值不具有代表2x),0( 21,x21,x性,任意取,才能代表区间上的所有值.师生合作:归纳得到增函数定义(此处增函数定义得到完善,师完善板书)【设计意图】定义中 取值的“任意性”是关键点,也是学生21,x理解的难点问题,为了帮助学生对 “任意性”的理解,教师21,x应给以适时的点拨:区间上的值有无数多个,是取不完的,因此应该取任意值,不可由特殊值来代替.(三)严格定义,理解概念(多媒体给出定义)增函数:一般地,设函数 的定义域为)(xf如果对于定义域内某个区间 D 上的任意两个自变量的值 ,当21
14、,x时,都有 ,则称函数 在区间 D 上是增函数21x)(21xff)(xf(increasing function).师:有了增函数的定义,请你具体谈谈你对“ 在区间 上2)(xf),0( 是增函数”是怎样理解的?(幻灯片给出该问题)预案:对定义域: 研究函数性质,首先应该在定义域内研究; 对区间:针对 这个区间, 单调性与定义域内区间相对应,是局部概)0(念;两个自变量的取值的任意性,代表了区间上所有值; 自变量变化与相应函数值变化的一致性.【设计意图】深化对定义的理解.师:有了对函数性质的这些认识,对比增函数的定义,你能给出减函数的定义吗?【设计意图】让学生通过类比,归纳概括出减函数定义
15、.(师:用多媒体给出减函数定义:一般地,设函数 的定义域为)(xf如果对于定义域内某个区间 D 上的任意两个自变量的值 ,当21,时,都有 ,则称函数 在区间 D 上是减函数21x)(21xff)(xf(decreasing function))(师用多媒体给出:如果函数 在区间 D 上是增函数或减函数,)(xfy那么就说 在这一区间具有(严格的)单调性,区间 D 叫做)(xfy的单调区间.)(xfy教师应提出:函数 在整个定义域内都是单调的,而函数xf)(在其定义域 内不单调,只在区间 上单调。2)(xf, ),0( 问题 3:回到前面引课时的气温曲线,说出函数的单调区间,并指明函数在相应区
16、间上是增函数还是减函数.【设计意图】让学生正确表达单调区间以及函数在相应区间上的单调性.(师:检测学生对定义的理解情况.)巩固练习:判断下列说法是否正确,并结合定义说明理由.(1)定义域为 的函数 ,满足 ,则函数 在),0)(xf ,3210),()nfnf )(xf上是增函数.( ),0(2)对于定义域内的区间 D,若任意 时,都有 ,则2121,xDx当 )(21xff函数 在 D 上是增函数. ( ))(xf变式:函数 在 D 上增函数,若任意 ,则有 _)(f ,21x)(21xff 1x2x(3) 对于定义域内的区间 D,任意 ,都有 ,则函Dx21, 0)()(2121xffx数
17、在 D 上是增函数. ( )【设计意图】深化学生对定义的理解,进一步巩固概念.师总结有了定义,我们对函数的单调性有了什么新的认识:单调性反映了在定义域内某个区间上随自变量的变化,函数的变化规律;描述法比较形象的反映了函数的这一特征,但不够精确;单调性的定义从代数形式进行刻画,更简练,更精确;我们借助图象可以直观感知单调性,但无法操作,而且并不是所有函数的图象都很简单,如果我们目前画不出图象怎么办(教师举例)而单调性的定义,则为我们用代数法严格证明单调性提xf1)(供了依据.(四)知识应用探究二:例 1:用定义证明:函数 在其定义域上是增函数.12)(xf(师生合作完成如下步骤:用区间表示定义域
18、;取值(突出“任意性”)两个不等的自变量值 ,(预案:以下有学生完成 :不妨设 ;将21,x 21x自变量值 代入到解析式得到相应函数 值 , (师问:如何比21,x )(1xf)(2f较 , 的大小呢?)希望获得 , 的什么关系,结论是什)(f)(f )(1f2么.)(师:用多媒体展示完整的证明过程和证明步骤)【设计意图】让学生学会如何分析问题,并初步体会用定义法证明单调性的过程中逻辑的严密性和言必有据;增强了学生运用代数法描述单调性的信心.教师演示(小实验):向上拉动活塞,在实验仪器中用手指封住一定量的气体,记下此时仪器上的刻度,用力向下压活塞并记下此时仪器上显示的刻度,结合手指的感觉,猜
19、想压强 P 随体积 V 的变化规律(师:多媒体给出例题)探究三:例题 2: 物理学中的玻意耳定律 (其中 ,且 为常数) ,告Vkp)(0k诉我们,对于一定量的气体,当体积 V 减小时,压强 P 将增大试用函数的单调性证明之(先由学生独立 5 秒后,思考突破本题难点)预案:定义域由题意,要证明 P(V)在 上是减函数学生独0(立书写证明过程学生进行组内讨论最后展示本组结果:学生板演后,其他小组纠错,讲解自己的证明过程)【设计意图】不同小组展示,纠正用定义证明过程中出现的错误,让学生明确如何从条件和已知出发获得想要的结论和用定义证明单调性的步骤.能力提升:“函数 在定义域 上是减函数”这个xf1
20、)(),0(),(说法正确吗?并说明理由.(补充写出函数 的单调区间(见课xf1件)预案函数在 和 都是减函数,所以在其定义域是减函数)0,(),(是正确的;举反例,取 , ,所以在2,1x21)()1(ff是减函数是错误的.),0(),(师:对学生判断做出评价,并指出函数 在定义域内的区间单xf)(调但在定义域上并不单调.【设计意图】通过学生之间的交流,举出反例,使学生能够正确理解单调性与区间相对应,并能正确书写函数的单调区间.(师补充作业:用定义证明函数 在 和 都是减函数(课xf1)()0,(),后完成)(五)课堂小结:本节课你有哪些收获?(学生交流本节课学习过程中的体会和收获,师生合作共同完成小结)用定义证明函数单调性的方法和步骤:取值,作差变形,判定符号,下结论;数学思想方法:数形结合;等价转化;归纳和类比等思想方法的运用.(六)分层作业:必做题:课本 32 页 练习 思考题:探究一次函数 ,二次函数)0()(kbxf和反比例函数 的单调性)0()(2acbxxf )(kxf七、教学反思函数的单调性是学习函数概念后研究的函数的第一个也是最基本的一个性质。本节课阐述了函数单调性产生的背景,归纳,抽象地概括了增函数、减函数和函数单调性的定义,充分体现了数学教
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。