1、一元一次方程方程的有关概念夯实基础1 等式用等号(“=” )来表示相等关系的式子叫做等式。温馨提示等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。如 才是等式。xx27352 等式的性质性质 1:等式两边同时加(或减)同一个数(或式子),结果仍相等。即如果 ,ba那么 。cba性质 2:等式两边同时乘同一个数,或除以同一个不为 0 的数,结果仍相等。即如果,那么 ;如果 ,那么 。ba0ccba温馨提示等式类似天平,当天平两端放有相同质量的物
2、体时,天平处于平衡状态。若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。所以运用等式性质 1 时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。如 ,左边加 2,右边也加 2,则有 。31x 23x运用等式的性质 2 时,等式两边不能同除以 0,因为 0 不能作除数或分母。等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果 ,ba那么 。b. 传递性:如果 ,那么 (也叫等量代换)。abcba,ca例 1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。
3、(1)如果 ,那么 ;5134x534x(2)如果 ,那么 ;cbyaxcax(3)如果 ,那么 。43tt3方程含有未知数的等式叫做方程。温馨提示方程有两层含义:方程必须是一个等式,即是用等号连接而成的式子。方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。如 。12x4方程与等式的区别与联系概念及其特点 区别 联系方程含有未知数的等式叫做方程。一个式子是方程,要满足两个条件:一是等式,二含有未知数。方程一定是等式,并且是含有未知数的等式。方程是特殊的等式。等式用等号来表示相等关系的式子叫做等式。等式的主体是相等关系。等式不一定是方程,因为等式不一定含有未知数。方程和等式的关系式从
4、属关系,且有不可逆性。5方程的解与解方程内容 实质方程的解使方程中等号左右两边相等的未知数的值叫做方程的解具体的数值解方程 求方程的解的过程叫做解方程 变形的过程温馨提示检验一个数是否是方程的解,只要用这个数代替方程中的未知数,如果方程两边的值相等,那么这个数就是方程的解;如果不相等,这个数就不是方程的解。方程可能无解,可能只有一个解,也可能有多个解。等式的基本性质是解方程的依据。方程的解释结果,而解方程是得到这个结果的一个过程。例 3:下列方程中解为 的是( )2xA. B.x03xC. D.62825例 4:利用等式的性质解下列方程:(1) (2)x7 36x掌握方法1等量关系的确定方法列
5、方程解应用题是初中数学的一个重点也是一个难点,要突破这一难关,学会寻找等量关系是关键,那么怎样寻找应用题中的等量关系呢?(1)从关键词中找等量关系;(2)对于同一个量,从不同角度用不同的方法表示,得到等量关系;(3)运用基本公式找等量关系;(4)运用不变量找等量关系。例 1:某村原有林地 108 公顷,旱地 54 公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的 20,设把 公顷旱地改为林地,则可列x方程为( )。A. B.108%254x )108%(254xC. D.6 54108x2利用方程的解求待定字母的方法利用方程的解求方程中的待定字母时,只要将方程的解代入方程,得
6、到关于待定字母的方程,即可解决问题。例 2:已知 是关于 的方程 的解,则 的值应为( xx)2(31xkk)。A. B.9 91C. D.31一元一次方程解一元一次方程夯实基础1 一元一次方程1.定义:只含有一个未知数(元),未知数的次数都是 1,等号两边都是整式,这样的方程叫做一元一次方程。2.标准形式:方程 (其中 是未知数, 、 是已知数,并且 )叫做一元0baxxab0a一次方程的标准形式。温馨提示一元一次方程中未知数所在的式子是整式,即分母不含未知数。一元一次方程只含有一个未知数,未知数的次数都为 1。如 , ,32x6y都不是一元一次方程。2x06x例 1:下列方程中,哪些是一元
7、一次方程?哪些不是?(1) ;(2) ;(3) ;1455yx0652x(4) ;( 5) 。3x12 移项1.定义:把等式一边的某项变号后移到另一边,叫做移项。2.示例:解方程 时,可在方程的两边先加 ,再减 ,得523x2xx23,即变形为 。52与原方程比较,这个变形过程如下: 53x2温馨提示移项的原理就是等式的性质 1。移项所移动的是方程中的项,并且是从方程的一边移到另一边,而不是方程的一边交换两个项的位置。移项时一定要改变所移动的项的符号,不移动的项不能变号。如解方程 ,1053x若移项,得 就出错了,原因是被移动的项“ ”的符号没有改变,而改变1035x x5了没有被移动的项“
8、”的符号。在移动时,最好先写左右两边不移动的项,再写移来的项。例 2:下列各题中的变形为移项的是( )。A.由 ,得1)2(x1xB.由 ,得573535C.由 ,得662D.由 ,得x883 去括号与去分母解一元一次方程的最终目标是要得到“ ”这一结果。为了达到这一目标,方程ax中有括号就要根据去括号法则去掉括号,即为去括号;方程中有分母的,根据等式性质 2去掉分母,即为去分母。温馨提示(1 ) 解含有括号的一元一次方程时,去括号时一般遵循去括号的基本法则。但在实际去括号时,应根据方程的结构特点利用一些方法技巧,恰当地去括号,以简化运算。对于一些特殊结构的方程,可采用以下去括号的技巧:先去外
9、再去内。即在解题时,打破常规,不是由内到外去括号,而是由外到内去括号。整体合并去括号。有些方程,把含有的某些多项式看作整体,先合并,再去括号,往往会简单。如,解方程 时,可把 看作整体先合并,再去括)8(23)(1xx8x号。(2 ) 去分母时,在方程两边要同时乘以所有分母的最小公倍数,不要漏乘不含分母的项。当分母时小数时,需要把分母化整。同时注意分母化整只与这一项有关,而与其他项无关,要与去分母区分开。例 3:下列方程去括号正确的是( )。A.由 得6)24(3x621xB.由 得C.由 得6)24(3x612xD.由 得 3例 4:方程 ,去分母正确的是( )。231xA. )1(8)(2
10、8xB. 1xC. )()(xD. 1323x4解一元一次方程的一般步骤步骤 具体做法 变形依据去分母 在方程的两边同乘各分母的最小公倍数 等式性质 2去括号先去小括号,再去中括号,最后去大括号去括号法则、分配律移项把含有未知数的项移到方程的一边,其它各项都移到方程的另一边(记住移项要变号)等式性质 1合并同类项 把方程化为 的形式)0(abx合并同类项法则系数化为 1在方程的两边都除以未知数的系数 ,a得到方程的解 a等式性质 2温馨提示1.解一元一次方程的五个步骤,有些可能用不到,有些可能重复使用,不一定按顺序进行,根据方程的特点灵活运用。2.在解方程的不用环节有各自不同的注意事项,分别如
11、下:去分母(1)分子是多项式的,去分母后要加括号;(2)不要漏乘不含分母的项去括号(1)括号前的数要乘括号内的每一项;(2)括号前面是负数,去掉括号后,括号内各项都要变号移项(1)移项时不要漏项;(2)将方程中的项从一边移到另一边要变号,而在方程同一边改变项的位置 时不变号合并同类项 按合并同类项法则进行,不要漏乘且系数的符号处理要得当系数化为 1(1)未知数的系数为整数或小数时,方程两边同除以该系数;(2)未知数的系数为分数时,方程两边同乘该系数的倒数例 5:解一元一次方程 。123x掌握方法1 一元一次方程概念的应用原方程为一元一次方程,即未知数的次数为 1,系数不为 0,由此来确定原方程
12、中待定字母的值。例 1:(1 )若 是关于 的一元一次方程,则 = ;21mxxm(2)若方程 是关于 的一元一次方程,则 0154)( x。2 利用合并同类项与移项解方程的方法(1 ) 合并同类项时,不能用连等号与原方程相连。(2 ) 几个常数项也是同类项,移项时应该把它们放到一起。(3 ) 移项时把某项改变符号后移到等式的另一边,而不是等式一边的两项交换位置。(4 ) 移项必变号,不变号不能移项。例 2:解方程:(1) ;(2) 。xx3714361a3 利用去分母解方程的方法利用等式的性质 2,在方程的两边同时乘各分母的最小公倍数,将分母去掉,把系数为分数的方程转化为系数为整数的方程。(
13、1 ) 分数线具有括号的作用,分子如果是一个多项式,去掉分母后,要把分母后,要把分子放在括号里。(2 ) 去分母时,不能漏乘不含分母的项。例 3:解方程 。3521x4 含小数的一元一次方程的解法将小数化成整数,是根据分数的基本性质把含小数的项的分子、分母乘同一个适当的数,而不是方程所有的项都乘这个数。小数化成整数,是对分母含小数的项的恒等变形。例 4:解方程: 。03.225.094xx5有关同解方程的解题方法如果两个方程的解相同,那么我们把这两个方程称为同解方程。已知两个一元一次方程是同解方程,求其中待定字母的取值,主要有两种常见题型,其解法有所不同。(1)在两个同解方程中,如果只有一个方
14、程中含有待定字母,一般先解不含待定字母的方程,再把未知数的值代入含有待定字母的方程中,求出待定字母的值。(2)如果在两个同解方程中都含有相同的待定字母,一般是分别解两个方程,用这个待定字母分别表示两个方程的解,并建立等式,形成关于这个待定字母的方程,求出该待定字母的值。例 5:已知方程 的解与关于 的方程 的解相同,求x1)(2x1)(3m的值。m一元一次方程列一元一次方程解应用题夯实基础1 列一元一次方程解应用题的一般步骤(1 ) 审:弄清题意和题目中的数量关系。(2 ) 设:用字母表示题目中的一个未知量。(3 ) 找:找出能够表示应用题全部含义的一个相等关系。(4 ) 列:根据这个相等关系
15、列出方程。(5 ) 解:解所列的方程,求出未知数的值。(6 ) 验:检验方程的解是否符合问题的实际意义。(7 ) 答:写出答案。二设未知数的几种方法设未知数的方法有三种:(1 ) 直接设未知数:题目求什么就设什么为未知数。(2 ) 间接设未知数:对于一些应用题,如果直接设所求的量为未知数,可能不容易列方程,这时可以间接地设一个或几个与所求的量有关系的量作为未知数,进而求出所求的量。(3 ) 设辅助未知数:如果前两种方法都行不通,便可设某个量为辅助未知数,辅助未知数仅作为题目中量与量之间关系的一种桥梁,一般情况下,解方程时不需要求出这个量。温馨提示采用直接设未知数的方法,原则是使分析条件更方便,
16、列方程更简单,这样比较容易得到方程,同时还要兼顾所得到的方程求解时难易。直接设未知数,好处是容易选取未知数,而且在解方程时可以直接得到问题的解。如果题目里涉及的几个量存在某种数量关系或某种比例关系,多采用间接设未知数的方法,间接设未知数是在直接设未知数、分析条件或列方程感到困难的时候才采取的方法。其优点是列出方程和解方程的过程都比较容易。如果应用题涉及的量较多,各量之间的关系又不明显,若能设立适当的辅助未知数,把不明显的关系表示出来,就可以顺利地列出方程或方程组。例 1:通讯员原计划 5h 从甲地到乙地,因为任务紧急,他每小时比原计划快3km,结果提前 1h 到达,求甲、乙两地间的距离。解析:
17、解法一:直接设未知数。设甲、乙两地间的距离为 km。利用速度间的x关系作相等关系:原计划速度 实际速度,得 ,解得 。315360解法二:间接设未知数,设原计划的速度为 km/h,则实际的速度为km/h。利用路程关系作相等关系:原计划的路程=实际的路程,得)3(x,解得 ,甲、乙两地的距离为 。)(15x12x )(60125kmx答:甲、乙两地的距离为 60km。例 2:一只船在逆水中航行,船上的一只救生圈掉入水中,5 分钟后,发现救生圈落水,船掉头去追赶救生圈,几分钟能够追上救生圈?(船掉头的时间忽略不计)解析:(设辅助未知数)设船在静水中的航行速度为 米/分,水流速度为 米ab/分, 分
18、钟后船能够追上落水的救生圈。根据题意,得t。 , 。答: 5 分钟后船能够追上落水的救)(5)(babaat5t生圈。3一元一次方程应用题的常见类型类型 内容 题中涉及的数量关系及公式 等量关系 注意事项和、差、倍分问题增长量=原有量增长率现有量=原有量 增长量现有量=原有量降低量由题可知弄清“倍数”关系及“多”“少”关系等等积变形问题长方体体积=长宽高圆柱体积= hr2( 为高, 为底面圆半径)变形前后体积相等要分清半径、直径相遇问题快车行驶路程+慢车行驶路程=原距离相向而行,注意出发时间、地点行 程 问 题追及问题路程=速度时间时间=路程速度速度=路程时间快车行驶路程-慢车行驶距离=原距离同向而行,注意出发时间、地点
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。