ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:24KB ,
资源ID:2143545      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2143545.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三角函数和差化积记忆方法与巧记口诀.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

三角函数和差化积记忆方法与巧记口诀.doc

1、三角函数和差化积记忆方法与巧记口诀和差化积记忆口诀 1:正和正在先,sin+sin=2sin(+)/2cos(-)/2正差正后迁,sin-sin=2cos(+)/2sin(-)/2余和一色余,cos+cos=2cos(+)/2cos(-)/2余差翻了天,cos-cos=-2sin(+)/2sin(-)/2(前提是角度(+)/2 在前,(-)/2 在后的标准形式) 和差化积记忆口诀 2:正加正,正在前:sin+sin=2sin(+)/2cos(-)/2余加余,余并肩 :cos+cos=2cos(+)/2cos(-)/2正减正,余在前:sin-sin=2cos(+)/2sin(-)/2余减余,负正

2、弦,cos-cos=-2sin(+)/2sin(-)/2和差化积:有相关的口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然概述注意事项在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然。生动的口诀 3:(和差化积)帅+帅=帅哥1帅-帅=哥帅哥+哥=哥哥哥-哥=负嫂嫂 反之亦然。语文老师教的口诀 4:口口之和仍口口 cos+cos=2cos(+)/2cos(-)/2赛赛之和赛口留 sin+sin=2sin(+)/2cos(-)

3、/2口口之差负赛赛 cos-cos=-2sin(+)/2sin(-)/2赛赛之差口赛收 sin-sin=2cos(+)/2sin(-)/2(前提是角度(+)/2 在前,(-)/2 在后的标准形式) :语文老师教的口诀 5:正弦加正弦,正弦在前面,sin+sin=2sin(+)/2cos(-)/2正弦减正弦,余弦在前面,sin-sin=2cos(+)/2sin(-)/2余弦加余弦,余弦全部见,cos+cos=2cos(+)/2cos(-)/2余弦减余弦,余弦(负)不想见,cos-cos=-2sin(+)/2sin(-)/2记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各

4、自的简单记忆方法。如何只记两个公式甚至一个我们可以只记上面四个公式的第一个和第三个。而第二个公式中的-sin=sin(+),也就是 sin-sin=sin+sin(+),这就可以用第一个公式解决。同理第四个公式中,cos-cos=cos+cos(+),这就可以用第三个公式解决。如果对诱导公式足够熟悉,可以在运算时把 cos全部转化为 sin,那样就只记住第一个公式就行了。用的时候想得起一两个就行了。结果乘以 2这一点最简单的记忆方法是通过三角函数的值域判断。sin 和 cos的值域都是-1,1,其积的值域也应该是-1,1,而和差的值域却是-2,2,因此乘以 2是必须的。也可以通过其证明来记忆,

5、因为展开两角和差公式后,未抵消的两项相同而造成有系数 2,如:cos(-)-cos(+)=(coscos+sinsin)-(coscos-sinsin)=2sinsin 故最后需要乘以 2。只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积。这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了。乘积项中的角要除以 2在和差化积公式的证明中,必须先把 和 表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于 和 ,这两个角应该是(+)/2 和(-)/2,也就是乘

6、积项中角的形式。注意和差化积和积化和差的公式中都有一个“除以 2”,但位置不同;而只有和差化积公式中有“乘以2”。使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(-)/2 的三角函数名。是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。(-)/2 的三角函数名规律为:和化为积时,以 cos(-)/2 的形式出现;反之,以 sin(-)/2 的形式出现。由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么 和 调换位置对结果没有影响,也就是若把(-)/2 替换为(-)/2,结果应当是一样的,从而(-)/2 的形式是 cos(-)/2;另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。当然,也有其他方法可以帮助这种情况的判定,如(0,内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当 大于 时,cos 小于cos。但是这时对应的(+)/2 和(-)/2 在(0,)的范围内,其正弦的乘积应大于 0,所以要么反过来把 cos 放到 cos 前面,要么就在式子的最前面加上负号。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。