ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:135.50KB ,
资源ID:2222348      下载积分:10 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2222348.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(绝对值提高题卷.doc)为本站会员(dwx****52)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

绝对值提高题卷.doc

1、 一解答题(共 12 小题)1已知 a 为一个有理数,解答下列问题:(1)如果 a 的相反数是 a,求 a 的值;(2)10a 一定大于 a 吗?说明你的理由2有理数 a,b,c 在数轴上的位置如图所示,且|a|=|b| ,化简|c a|+|cb|+|a+b|3有 200 个数 1,2,3,199,200任意分为两组(每组 100 个) ,将一组按由小到大的顺序排列,设为a1a 2a 100,另一组按由大到小的顺序排列,设为 b1b 2b 100,试求代数式|a1b1|+|a2b2|+|a99b99|+|a100b100|的值4若 a,b,c 为整数,且|ab| 19+|ca|99=1,试计算

2、|c a|+|ab|+|bc|的值5若 x0,y0,求:|y|+|xy+2| |yx3|的值6同学们都知道,|4 (2)|表示 4 与 2 的差的绝对值,实际上也可理解为 4 与2 两数在数轴上所对应的两点之间的距离;同理|x 3|也可理解为 x 与 3 两数在数轴上所对应的两点之间的距离试探索:(1)|4 (2)|= _ (2)找出所有符合条件的整数 x,使|x 4|+|x+2|=6 成立(3)由以上探索猜想,对于任何有理数 x,|x 3|+|x6|是否有最小值?如果有,写出最小值;如果没有,说明理由7先阅读下列材料,然后完成下列填空:点 A、B 在数轴上分别表示实数 a、b,A 、B 两点

3、之间的距离表示为|AB|,当 A、B 两点中有一点在原点时,不妨设 A 点在原点,如图 1|AB|=|OB|=|b|=|b0|=|ab|;当 A、B 两点都不在原点时,如图 2,A、B 两点都在原点的右边,|AB|=|OB| |OA|=|b|a|=ba=|ab|如图 3,A、B 两点都在原点的左边,|AB|=|OB| |OA|=|b|a|=b( a)=|ab|如图 4,A、B 两点分别在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=a+( b)=|ab|综上所述,(1)上述材料用到的数学思想方法是 _ (至少写出 2 个)(2)数轴上 A、B 两点之间的距离|AB|=|ab|回答下

4、列问题:数轴上表示 2 和 5 的两点之间的距离是 _ ;数轴上表示2 和 5 的两点之间的距离是 _ ;数轴上表示 1 和4 的两点之间的距离是 _ ;(3)数轴上表示 x 和1 的两点 A 和 B 之间的距离是 _ ;如果|AB|=2,那么 x 为 _ 8已知有理数 a,b 在数轴上的对应点的位置如图,0 表示原点请在数轴上表示出数a,b 对应的点的位置;请按从小到大的顺序排列 a,a, b,b,1,0 的大小9化简:|2x+1|x 3|+|x6|10若 abc0,则 + + 的所有可能值是什么?11设 , , , ,比较 a、b、c、d 的大小12试比较 , , , 这四个数的大小参考答

5、案与试题解析一解答题(共 12 小题)1已知 a 为一个有理数,解答下列问题:(1)如果 a 的相反数是 a,求 a 的值;(2)10a 一定大于 a 吗?说明你的理由考点: 相反数;有理数大小比较719606 分析: (1)根据互为相反数的两数之和为 0,可得出 a 的值;(2)讨论 a 为负值时即可得出结论解答: 解:(1)a+a=0,解得:a=0;(2)当 a0 时,10a a 故 10a 不一定大于 a点评: 本题考查了相反数的知识,属于基础题,注意负数的绝对值越大其值越小2有理数 a,b,c 在数轴上的位置如图所示,且|a|=|b| ,化简|c a|+|cb|+|a+b|考点: 绝对

6、值;数轴719606 分析: 由数轴可知:bc0,a 0,再根据有理数的运算法则,求出绝对值里的代数式的正负性,最后根据绝对值的性质化简解答: 解:由数轴,得 bc0,a 0,又|a|=|b| ,ca0,c b0,a+b=0|ca|+|cb|+|a+b|=ca+bc=ba点评: 做这类题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质“正数的绝对值是它本身,负数的绝对值是它的相反数, 0 的绝对值还是 0”进行化简计算3有 200 个数 1,2,3,199,200任意分为两组(每组 100 个) ,将一组按由小到大的顺序排列,设为a1a 2a 100,另一组按由大到小的顺序排列,设为

7、b1b 2b 100,试求代数式|a1b1|+|a2b2|+|a99b99|+|a100b100|的值考点: 整数问题的综合运用;绝对值719606 专题: 探究型分析: 由题意可知绝对值式展开后就会发现,最后的式子是一百个大数的和减一百个小数的和,而这些数都是 1到 200 之间的,故可得出结论解答: 解: 将一组按由小到大的顺序排列,设为 a1a 2a 100,另一组按由大到小的顺序排列,设为 b1b 2b 100,设 a1=b1+1, a2=b2+2,原式 =(101+102+200 )(1+2+100)=100100=10000故答案为:10000点评: 本题考查的是整数问题的综合运用

8、,能根据题意得出原式=(101+102+ +200)(1+2+100)是解答此题的关键4若 a,b,c 为整数,且|ab| 19+|ca|99=1,试计算|c a|+|ab|+|bc|的值考点: 绝对值719606 专题: 探究型分析: 根据绝对值的定义和已知条件 a,b,c 为整数,且|ab| 19+|ca|99=1 确定出 a、b、c 的取值及相互关系,进而在分情况讨论的过程中确定|ca| 、|ab| 、|bc|,从而问题解决解答: 解:a,b,c 均为整数,则 ab,c a 也应为整数,且|a b|19,|c a|99 为两个非负整数,和为 1,所以只能是|a b|19=0 且|ca|

9、99=1,或|a b|19=1 且|ca| 99=0由知 ab=0 且|ca|=1 ,所以 a=b,于是|b c|=|ac|=|ca|=1;由知|a b|=1 且 ca=0,所以 c=a,于是|b c|=|ba|=|ab|=1无论或都有|b c|=1 且|ab|+|ca|=1,所以|c a|+|ab|+|bc|=2点评: 根据绝对值的定义和已知条件确定出 a、b、c 的取值及关系是解决本题的关键,同时注意讨论过程的全面性5若 x0,y0,求:|y|+|xy+2| |yx3|的值考点: 绝对值719606 分析: 首先根据 x、y 的取值确定 xy+2 和 yx3 的取值,从而去掉绝对值符号化简

10、;解答: 解: x0,y0,xy+20,yx 30|y|+|xy+2|yx3|=y+(xy+2)+(yx3)=y+x y+2+yx3=y1点评: 此题考查了有理数的加法运算注意根据题意确定 xy+2 和 yx3 的符号是解此题的关键6同学们都知道,|4 (2)|表示 4 与 2 的差的绝对值,实际上也可理解为 4 与2 两数在数轴上所对应的两点之间的距离;同理|x 3|也可理解为 x 与 3 两数在数轴上所对应的两点之间的距离试探索:(1)|4 (2)|= 6 (2)找出所有符合条件的整数 x,使|x 4|+|x+2|=6 成立(3)由以上探索猜想,对于任何有理数 x,|x 3|+|x6|是否

11、有最小值?如果有,写出最小值;如果没有,说明理由考点: 绝对值;数轴719606 分析: (1)直接去括号,再按照去绝对值的方法去绝对值就可以了(2)要 x 的整数值可以进行分段计算,令 x4=0 或 x+2=0 时,分为 3 段进行计算,最后确定 x 的值(3)根据(2)方法去绝对值,分为 3 种情况去绝对值符号,计算三种不同情况的值,最后讨论得出最小值解答: 解:(1)原式=|4+2|=6故答案为:6;(2)令 x4=0 或 x+2=0 时,则 x=4 或 x=2当 x2 时,(x4)(x+2)=6,x+4x2=6,x=2(范围内不成立)当2 x 4 时,(x4)+(x+2)=6,x+4+

12、x+2=6,6=6,x=1,0,1,2,3当 x4 时,( x4) +(x+2)=6 ,x4+x+2=6,2x=8,x=4,x=4(范围内不成立)综上所述,符合条件的整数 x 有:2,1,0,1,2,3, 4(3)由(2)的探索猜想,对于任何有理数 x,|x 3|+|x6|有最小值为 3点评: 本题是一道去绝对值和数轴相联系的综合试题,考查了取绝对值的方法,取绝对值在数轴上的运用难度较大去绝对的关键是确定绝对值里面的数的正负性7先阅读下列材料,然后完成下列填空:点 A、B 在数轴上分别表示实数 a、b,A 、B 两点之间的距离表示为|AB|,当 A、B 两点中有一点在原点时,不妨设 A 点在原

13、点,如图 1|AB|=|OB|=|b|=|b0|=|ab|;当 A、B 两点都不在原点时,如图 2,A、B 两点都在原点的右边,|AB|=|OB| |OA|=|b|a|=ba=|ab|如图 3,A、B 两点都在原点的左边,|AB|=|OB| |OA|=|b|a|=b( a)=|ab|如图 4,A、B 两点分别在原点的两边,|AB|=|OB|+|OA|=|b|+|a|=a+( b)=|ab|综上所述,(1)上述材料用到的数学思想方法是 数形结合、分类讨论 (至少写出 2 个)(2)数轴上 A、B 两点之间的距离|AB|=|ab|回答下列问题:数轴上表示 2 和 5 的两点之间的距离是 3 ;数轴

14、上表示2 和 5 的两点之间的距离是 3 ;数轴上表示 1 和4的两点之间的距离是 5 ;(3)数轴上表示 x 和1 的两点 A 和 B 之间的距离是 |x+1| ;如果|AB|=2,那么 x 为 1 或3 考点: 数轴;绝对值719606 专题: 数形结合;分类讨论分析: (1)从材料所提供的解题过程来总结所用的数学思想方法;(2)直接根据数轴上 A、B 两点之间的距离|AB|=|ab|代入数值运用绝对值即可求任意两点间的距离(3)根据绝对值的性质,可得到一个一元一次不等式组,通过求解,就可得出 x 的取值范围解答: 解:(1)根据“如图 2、如图 3、如图 4”可知,该材料用到了“数形结合

15、” 是数学思想和“分类讨论”的数学思想;(2)数轴上表示 2 和 5 的两点之间的距离是|2 5|=3,数轴上表示2 和 5 的两点之间的距离是|2 (5)|=3数轴上表示 1 和3 的两点之间的距离是|1 (4)|=5 (3)数轴上表示 x 和1 的两点 A 和 B 之间的距离是|x (1)|=|x+1| ,如果|AB|=2,那么 x 为 1 或3故答案是:(1)数形结合、分类讨论;(2)3、3、5;(3)|x+1|、1 或3点评: 此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点8已知有理数 a,b 在数轴上的对应点的位置如图,0

16、 表示原点请在数轴上表示出数a,b 对应的点的位置;请按从小到大的顺序排列 a,a, b,b,1,0 的大小考点: 有理数大小比较;数轴719606 分析: 根据数轴得出 a101b,得出a 0,b0,且 |a|=|a|,| b|=b,根据以上内容标出即可;根据数轴上表示的数右边的总比左边的数大比较即可解答: 解:在数轴上表示出数a,b 对应的点的位置如图所示:;a b 10b a点评: 本题考查了数轴和有理数的大小比较、相反数等知识点,主要考查学生的画图能力和理解能力,注意:在数轴上表示的数右边的总比左边的数大9化简:|2x+1|x 3|+|x6|考点: 绝对值719606 专题: 分类讨论

17、分析: 先分别令 2x+1=0、x3=0 、x6=0 分别求出 x 的对应值,再根据 x 的取值范围利用绝对值的性质去掉绝对值符号即可解答: 解: 由 2x+1=0、x3=0、x6=0 分别求得:x= ,x=3,x=6,当 时,原式= (2x+1)+(x3)(x 6)=2x+2;当 时,原式=(2x+1)+ (x 3)(x6)=2x+4;当 3x6 时,原式 =(2x+1)(x 3)(x6)=10;当 x6 时,原式 =(2x+1) (x 3)+ (x 6)=2x 2;原式 = 点评: 本题考查的是绝对值的性质,在解答此题时要注意应用分类讨论的思想,不要漏解10若 abc0,则 + + 的所有

18、可能值是什么?考点: 绝对值719606 专题: 计算题;分类讨论分析: 由已知可得,a,b,c 均不为零,因为题中没有指明 a,b ,c 的正负,故应该分四种情况:(1)当a,b,c 均大于零时;(2)当 a,b,c 均小于零时;(3)当 a,b,c 中有两个大于零,一个小于零时;(4)当 a,b,c 中有两个小于零,一个大于零时,从而确定答案解答: 解: abc0,a0,b0,c0( 1)当 a,b,c 均大于零时,原式 =3;(2)当 a,b,c 均小于零时,原式= 3;(3)当 a,b,c 中有两个大于零,一个小于零时,原式=1;(4)当 a,b,c 中有两个小于零,一个大于零时,原式

19、=1 + + 的所有可能值是: 3,1点评: 此题主要考查了绝对值的性质,采用分类讨论思想是解答此题的关键11设 , , , ,比较 a、b、c、d 的大小考点: 有理数大小比较719606 专题: 计算题分析: 将各式转化为整数部分加小数部分(真分数)的形式,然后比较整数部分即可解答: 解: a= =10006+ ;b= =10001+ ;c= =10000+ ;d= =9995+ abcd点评: 此题考查了有理数大小的比较方法,根据此题的特点,要将各数值化为整数部分加小数部分的形式即可进行比较12试比较 , , , 这四个数的大小考点: 有理数大小比较719606 分析: 观察这四个分数的分子与分母可发现,这四个分数可以化为同分子的分数,然后根据同分子的正分数,分母大的分数比较小来比较它们的大小即可解答: 解: = =1+ = = = =1 (同分子的正分数,分母大的分数比较小) 点评: 解答本题时是借助不等式的性质(不等式的两边同时加上同一个数,不等式的符号方向不变)来比较有理数的大小的

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。