ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:63.50KB ,
资源ID:2239987      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2239987.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(德育渗透教案(算法概念).doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

德育渗透教案(算法概念).doc

1、德育渗透教案一:11 1 算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。 (2)能够用自然语言叙述算法。 (3)掌握正确的算法应满足的要求。 (4)会写出解线性方程(组)的算法。 (5)会写出一个求有限整数序列中的最大值的算法。(6)会应用 Scilab 求解方程组。2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。3、情感态度与价值观:通过本节的学

2、习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。难点:把自然语言转化为算法语言。三、学法与教学用具:学法:1、写出的算法,必须能解决一类问题(如:判断一个整数 n(n1)是否为质数;求任意一个方程的近似解;),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。3、要保证算法正确,且计算机能够执行,如:让计算机计算 12345 是可以做到的,但让计算机去执行“倒一杯水” “替我理发”等则是做不到的。教学用具:电脑,计算器,图形计

3、算器四、教学设想:1、创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。2、探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤

4、称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。3、例题分析:例 1 任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n 是否为质数 1做出判定。算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断 n 是否等于 2,若 n=2,则 n 是质数;若 n2,则执行第二步。第二步:依次从 2 至(n-1)检验是不是 n 的因数,即整除 n 的数,若有这

5、样的数,则 n 不是质数;若没有这样的数,则 n 是质数。这是判断一个大于 1 的整数 n 是否为质数的最基本算法。例 2 用二分法设计一个求议程 x22=0 的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过 0.005,则不难设计出以下步骤:第一步:令 f(x)=x22。因为 f(1)0,所以设 x1=1,x 2=2。第二步:令 m=(x1+x2)/2,判断 f(m)是否为 0,若则,则 m 为所长;若否,则继续判断f(x1)f(m)大于 0 还是小于 0。第三步:若 f(x1)f(m)0,则令 x1=m;否则,令 x2=m。第四步:判断|x 1x

6、2|max, 则 max=b.S3 如果 Cmax, 则 max=c.S4 max 就是 a,b,c 中的最大值。综合应用题例 5 写出求 1+2+3+4+5+6 的一个算法。分析:可以按逐一相加的程序进行,也可以利用公式 1+2+n= 进行,也可以根据加法2)1(运算律简化运算过程。解:算法 1:S1:计算 1+2 得到 3;S2:将第一步中的运算结果 3 与 3 相加得到 6;S3:将第二步中的运算结果 6 与 4 相加得到 10;S4:将第三步中的运算结果 10 与 5 相加得到 15;S5:将第四步中的运算结果 15 与 6 相加得到 21。算法 2:S1:取 n=6;S2:计算 ;)

7、1(nS3:输出运算结果。算法 3:S1:将原式变形为(1+6)+(2+5)+(3+4)=37;S2:计算 37;S3:输出运算结果。小结:算法 1 是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如 1+2+3+10000,再用这种方法是行不通的;算法 2 与算法 3 都是比较简单的算法,但比较而言,算法 2 最为简单,且易于在计算机上执行操作。学生做一做 求 1357911 的值,写出其算法。老师评一评 算法 1;第一步,先求 13,得到结果 3;第二步,将第一步所得结果 3 再乘以 5,得到结果 15;第三步,再将 15 乘以 7,得到结果 105;第四步,再将 105 乘以 9,得

8、到 945;第五步,再将 945 乘以 11,得到 10395,即是最后结果。算法 2:用 P 表示被乘数,i 表示乘数。S1 使 P=1。S2 使 i=3S3 使 P=PiS4 使 i=i+2S5 若 i11,则返回到 S3 继续执行;否则算法结束。小结 由于计算机动是高速计算的自动机器,实现循环的语句。因此,上述算法 2 不仅是正确的,而且是在计算机上能够实现的较好的算法。在上面的算法中,S3,S4,S5 构成一个完整的循环,这里需要说明的是,每经过一次循环之后,变量 P、i 的值都发生了变化,并且生循环一次之后都要在步骤 S5 对 i 的值进行检验,一旦发现 i 的值大于 11 时,立即

9、停止循环,同时输出最后一个 P 的值,对于循环结构的详细情况,我们将在以后的学习中介绍。4、课堂小结本节课主要讲了算法的概念,算法就是解决问题的步骤,平时列论我们做什么事都离不开算法,算法的描述可以用自然语言,也可以用数学语言。例如,某同学要在下午到体育馆参加比赛,比赛下午 2 时开始,请写出该同学从家里发到比赛地的算法。若用自然语言来描述可写为(1)1:00 从家出发到公共汽车站(2)1:10 上公共汽车(3)1:40 到达体育馆(4)1:45 做准备活动。(5)2:00 比赛开始。若用数学语言来描述可写为:S1 1:00 从家出发到公共汽车站S2 1:10 上公共汽车S3 1:40 到达体

10、育馆S4 1:45 做准备活动S5 2:00 比赛开始大家从中要以看出,实际上两种写法无本质区别,但我们在书写时应尽量用教学语言来描述,它的优越性在以后的学习中我们会体会到。5、自我评价 1、写出解一元二次方程 ax2+bx+c=0(a0)的一个算法。2、写出求 1 至 1000 的正数中的 3 倍数的一个算法(打印结果)6、评价标准1、解:算法如下S1 计算=b 2-4acS2 如果0,则方程无解;否则 x1=S3 输出计算结果 x1,x2 或无解信息。2、解:算法如下:S1 使 i=1S2 i 被 3 除,得余数 rS3 如果 r=0,则打印 i,否则不打印S4 使 i=i+1S5 若 i

11、1000,则返回到 S2 继续执行,否则算法结束。7、作业:1、写出解不等式 x2-2x-30 的不等式的解的步骤(为方便,我们设 a0)如下:第一步:计算= ;acb42第二步:若0,示出方程两根 (设 x1x2) ,则不等式解集为 x | xx1或abx242,1xx2;第三步:若= 0,则不等式解集为 x | xR 且 x ;第四步:若0,则不等式的解集为 R。2、求过 P(a1,b1)、Q( a2,b2)两点的直线斜率有如下的算法:第一步:取 x1= a1, y1= b1, x2= a2, y1= b2;第二步:若 x1= x2;第三步:输出斜率不存在;第四步:若 x1 x2;第五步:计算 ;1yk第六步:输出结果。3、写出求过两点 M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。解:算法:第一步:取 x1=-2, y1=-1, x2=2, y2=3;第二步:计算 ;22y第三步:在第二步结果中令 x=0 得到 y 的值 m,得直线与 y 轴交点(0,m);第四步:在第二步结果中令 y=0 得到 x 的值 n,得直线与 x 轴交点(n,0);第五步:计算 S= ;|1nm第六步:输出运算结果

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。