ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:108.50KB ,
资源ID:2249434      下载积分:15 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2249434.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(整式的乘法(基础)知识讲解.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

整式的乘法(基础)知识讲解.doc

1、整式的乘法(基础)【学习目标】1. 会进行单项式的乘法,单项式与多项式的乘法,多项式的乘法计算2. 掌握整式的加、减、乘、乘方的较简单的混合运算,并能灵活地运用运算律简化运算.【要点梳理】要点一、单项式的乘法法则单项式与单项式相乘,把它们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它们的指数作为积的一个因式.要点诠释:(1)单项式的乘法法则的实质是乘法的交换律和同底数幂的乘法法则的综合应用.(2)单项式的乘法方法步骤:积的系数等于各系数的积,是把各单项式的系数交换到一起进行有理数的乘法计算,先确定符号,再计算绝对值;相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”

2、进行计算;只在一个单项式里含有的字母,要连同它的指数写在积里作为积的一个因式.(3)运算的结果仍为单项式,也是由系数、字母、字母的指数这三部分组成.(4)三个或三个以上的单项式相乘同样适用以上法则.要点二、单项式与多项式相乘的运算法则单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即 ()mabcmbc.要点诠释:(1)单项式与多项式相乘的计算方法,实质是利用乘法的分配律将其转化为多个单项式乘单项式的问题.(2)单项式与多项式的乘积仍是一个多项式,项数与原多项式的项数相同.(3)计算的过程中要注意符号问题,多项式中的每一项包括它前面的符号,同时还要注意单项式的符号.(4)

3、对混合运算,应注意运算顺序,最后有同类项时,必须合并,从而得到最简的结果.要点三、多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即 abmnabmn.要点诠释:多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积.多项式与多项式相乘的最后结果需化简,有同类项的要合并.特殊的二项式相乘: 2xxa.【典型例题】类型一、单项式与单项式相乘1、计算:(1) 2213ababc;(2) 121()(3nxyxz;(3) 2226()mnyx【思路点拨】前两个题只要按单项式乘法法则运算即可,第(3)题应把

4、 xy与 分别看作一个整体,那么此题也属于单项式乘法,可以按单项式乘法法则计算【答案与解析】解: (1) 2213ababc2()()c42abc(2) 121()(3nxyxz12()()(nnxyz413nxyz(3) 23226()()mnyxx22321(6)()()()3nxy5mnxy【总结升华】凡是在单项式里出现过的字母,在其结果里也应全都有,不能漏掉 举一反三:【变式】 (2014甘肃模拟)计算:2m 2(2mn)( m2n3) 【答案】解:2m 2(2mn)( m2n3)=2(2)( )(m 2mnm2n3)=2m5n4类型二、单项式与多项式相乘2、 计算:(1) 2433a

5、bab;(2) 22(6)xyxy;(3) 22240.3abab;【答案与解析】解:(1) 2433abab2114(2)3ab2321abab(2) 22(6)xyxy222213()()(6)3xyA243296xyxy(3) 2220.abab2223453abab2222244342245abab【总结升华】计算时,符号的确定是关键,可把单项式前和多项式前的“”或“”号看作性质符号,把单项式乘以多项式的结果用“”号连结,最后写成省略加号的代数和举一反三:【变式 1】22431(6)mnmn【答案】解:原式22423211nn262626274mm【变式 2】若 n为自然数,试说明整式

6、 1nn的值一定是 3 的倍数【答案】解: 21 223因为 3n能被 3 整除,所以整式 1nn的值一定是 3 的倍数类型三、多项式与多项式相乘3、计算:(1) (2)(45)ab;(2) 21xx;(3) ()()ab;(4) 2535xx【答案与解析】 解:(1) (3)(45)ab221810ab2710ab(2) 21xx()(x4x(3) ()222)()ababab(4) 25(1)(3)5xx320571)322510715xx8【总结升华】多项式乘以多项式时须把一个多项式中的每一项乘以另一个多项式的每一项,刚开始时要严格按法则写出全部过程,以熟悉解题步骤,计算时要注意的是:(

7、1)每一项的符号不能弄错;(2)不能漏乘任何一项4、 (2014 秋花垣县期末)解方程:(x+7) (x+5)(x+1) (x+5)=42【思路点拨】先算乘法,再合并同类项,移项,系数化成 1 即可【答案与解析】解:(x+7) (x+5)(x+1) (x+5)=42,x2+12x+35(x 2+6x+5)=42,6x+30=42,6x=12,x=2【总结升华】本题考查了解一元一次方程,多项式乘以多项式的应用,主要考查学生的计算能力,难度适中举一反三:【变式】求出使 (32)49(2)3xx成立的非负整数解【答案】不等式两边分别相乘后,再移项、合并、求解解: 229168(6),954xx,22,1546,x 取非负整数为 0,1,2,3

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。