ImageVerifierCode 换一换
格式:DOC , 页数:9 ,大小:93KB ,
资源ID:2274661      下载积分:150 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2274661.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(2014年北师大七年级数学上册《整式及其加减》计算题专项练习一(含答案).doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

2014年北师大七年级数学上册《整式及其加减》计算题专项练习一(含答案).doc

1、2014 年北师大七年级数学上册整式及其加减计算题专项练习一一解答题(共 12 小题)1计算题12( 8)+(7) 15; 12+2( 5)(3) 3 ;(2x3y)+(5x+4y ) ; (5a 2+2a1)4(38a+2a 2) 2 (1)计算:4+( 2) 22( 36)4; (2)化简:3(3a2b)2(a 3b) 3计算:(1)7x+4(x 22)2(2x 2x+3) ; (2)4ab3b 2(a 2+b2) (a 2b2);(3) (3mn5m 2) (3m 25mn) ; (4)2a+2(a+1)3(a 1) 4化简(1)2(2a 2+9b)+3( 5a24b) (2)3(x 3

2、+2x21)(3x 3+4x22)5 (2009柳州)先化简,再求值:3(x 1)(x5) ,其中 x=26已知 x=5,y=3 ,求代数式 3(x+y )+4(x+y)6(x+y)的值7已知 A=x23y2,B=x 2y2,求解 2AB8若已知 M=x2+3x5,N=3x 2+5,并且 6M=2N4,求 x9已知 A=5a22ab,B= 4a2+4ab,求:(1)A+B;( 2)2AB;(3)先化简,再求值:3(A+B)2(2AB) ,其中 A=2,B=110设 a=14x6,b= 7x+3,c=21x 1(1)求 a(b c)的值;(2)当 x= 时,求 a(bc)的值11化简求值:已知

3、a、b 满足:|a2|+(b+1) 2=0,求代数式 2(2a3b) (a 4b)+2(3a+2b)的值12已知(x+1) 2+|y1|=0,求 2(xy 5xy2)(3xy 2xy)的值2014 年北师大七年级数学上册整式及其加减计算题专项练习一参考答案与试题解析一解答题(共 12 小题)1计算题12( 8)+(7) 15; 12+2( 5)(3) 3 ;(2x3y)+(5x+4y ) ; (5a 2+2a1)4(38a+2a 2) 考点: 整式的加减;有理数的混合运算菁优网版权所有专题: 计算题分析: (1)直接进行有理数的加减即可得出答案(2)先进行幂的运算,然后根据先乘除后加减的法则进

4、行计算(3)先去括号,然后合并同类项即可得出结果(4)先去括号,然后合并同类项即可得出结果解答: 解:原式=12+8715=2;原式=1 10+27 =11+81=70;原式=2x3y+5x+4y=7x+y;原式=5a 2+2a112+32a8a2=3a2+34a13点评: 本题考查了整式的加减及有理数的混合运算,属于基础题,解答本题的关键熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点2 (1)计算:4+( 2) 22( 36)4;(2)化简:3(3a2b)2(a3b) 考点: 整式的加减;有理数的混合运算菁优网版权所有分析: (1)按照有理数混合运算的顺序,先乘方后乘除最后算

5、加减;(2)运用整式的加减运算顺序计算:先去括号,再合并同类项解答: 解:(1)原式=4+4 2(9)=4+8+9=17;(2)原式=9a6b 2a+6b=(92) a+(6+6 )b=7a点评: 在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:得+,+得 ,+得+,+ 得;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减3计算:(1)7x+4(x 22)2(2x 2x+3) ;(2)4ab3b 2(a 2+b2)(a 2b2);(3) (3mn5m 2) (3m 25mn) ;(4)2a+2(a+1)3(a 1) 考点: 整式的加减菁优网版权所有分析:

6、 (1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;(3)先去括号,再合并同类项即可;(4)先去括号,再合并同类项即可解答: 解:(1)7x+4(x 22)2(2x 2x+3)=7x+4x284x2+2x6=9x14;(2)4ab3b 2(a 2+b2)(a 2b2)=4ab3b2a2+b2a2+b2=4ab3b22b2=4ab5b2;(3) (3mn5m 2) (3m 25mn)=3mn5m23m2+5mn=8mn8m2;(4)2a+2(a+1)3(a 1)=2a+2a+23a+3=a+5点评: 本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的

7、法则,这是各地中考的常考点4化简(1)2(2a 2+9b)+3( 5a24b)(2)3(x 3+2x21)(3x 3+4x22)考点: 整式的加减菁优网版权所有专题: 计算题分析: (1)原式利用去括号法则去括号后,合并同类项即可得到结果;(2)原式利用去括号法则去括号后,合并同类项即可得到结果解答: 解:(1)原式=4a 2+18b15a212b=11a2+6b;(2)原式=3x 3+6x233x34x2+2=2x21点评: 此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键5 (2009柳州)先化简,再求值:3(x 1)(x5) ,其中 x=2考

8、点: 整式的加减化简求值 菁优网版权所有分析: 本题应对方程去括号,合并同类项,将整式化为最简式,然后把 x 的值代入即可解答: 解:原式=3x 3x+5=2x+2,当 x=2 时,原式=2 2+2=6点评: 本题考查了整式的化简整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点6已知 x=5,y=3 ,求代数式 3(x+y )+4(x+y)6(x+y)的值考点: 整式的加减化简求值 菁优网版权所有分析: 先把 x+y 当作一个整体来合并同类项,再代入求出即可解答: 解: x=5,y=3 ,3( x+y)+4 (x+y)6(x+y)=x+y=5+3=8点评: 本题考查了整式的加减

9、的应用,主要考查学生的计算能力,用了整体思想7已知 A=x23y2,B=x 2y2,求解 2AB考点: 整式的加减菁优网版权所有分析: 直接把 A、B 代入式子,进一步去括号,合并得出答案即可解答: 解:2AB=2(x 23y2) (x 2y2)=2x26y2x2+y2=x25y2点评: 此题考查整式的加减混合运算,掌握去括号法则和运算的方法是解决问题的关键8若已知 M=x2+3x5,N=3x 2+5,并且 6M=2N4,求 x考点: 整式的加减;解一元一次方程菁优网版权所有专题: 计算题分析: 把 M 与 N 代入计算即可求出 x 的值解答: 解: M=x2+3x5,N=3x 2+5,代入得

10、:6x 2+18x30=6x2+104,解得:x=2点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键9已知 A=5a22ab,B= 4a2+4ab,求:(1)A+B;(2)2AB;(3)先化简,再求值:3(A+B)2(2AB) ,其中 A=2,B=1 考点: 整式的加减;整式的加减化简求值菁优网版权所有专题: 计算题分析: (1)把 A 与 B 代入 A+B 中计算即可得到结果;(2)把 A 与 B 代入 2AB 中计算即可得到结果;(3)原式去括号合并得到最简结果,把 A 与 B 的值代入计算即可求出值解答: 解:(1)A=5a 22ab,B=4a 2+4ab,A+B=5a22a

11、b4a2+4ab=a2+2ab;(2)A=5a 22ab,B=4a 2+4ab,2AB=10a24ab+4a24ab=14a28ab;(3)原式=3A+3B4A+2B=A+5B ,把 A=2,B=1 代入得:原式=2+5=7点评: 此题考查了整式的加减,熟练掌握运算法则是解本题的关键10设 a=14x6,b= 7x+3,c=21x 1(1)求 a(b c)的值;(2)当 x= 时,求 a(b c)的值考点: 整式的加减;代数式求值菁优网版权所有专题: 计算题分析: (1)把 a,b,c 代入 a(bc)中计算即可得到结果;(2)把 x 的值代入(1)的结果计算即可得到结果解答: 解:(1)把

12、a=14x6,b= 7x+3,c=21x 1 代入得:a(b c)=ab+c=14x6+7x 3+21x1=42x10;(2)把 x= 代入得:原式=42 10=10.510=0.5点评: 此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键11化简求值:已知 a、b 满足:|a2|+(b+1) 2=0,求代数式 2(2a3b) (a 4b)+2(3a+2b)的值考点: 整式的加减化简求值;非负数的性质:绝对值;非负数的性质:偶次方菁优网版权所有专题: 计算题分析: 原式去括号合并得到最简结果,利用非负数的性质求出 a 与 b 的值,代入计算即可求出值解答: 解:原式=4a 6

13、ba+4b6a+4b=3a+2b,|a2|+( b+1) 2=0,a=2, b=1,则原式= 62=8点评: 此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键12已知(x+1) 2+|y1|=0,求 2(xy 5xy2)(3xy 2xy)的值考点: 整式的加减化简求值;非负数的性质:绝对值;非负数的性质:偶次方菁优网版权所有分析: 因为平方与绝对值都是非负数,且(x+1) 2+|y1|=0,所以 x+1=0,y1=0,解得 x,y 的值再运用整式的加减运算,去括号、合并同类项,然后代入求值即可解答: 解:2(xy5xy 2) (3xy 2xy)=(2xy 10xy2)(3xy 2xy)=2xy10xy23xy2+xy=(2xy+xy)+(3xy 210xy2)=3xy13xy2,( x+1) 2+|y1|=0( x+1)=0 ,y1=0x=1,y=1当 x=1,y=1 时,3xy13xy2=3( 1)113 (1)1 2=3+13=10答:2(xy5xy 2) (3xy 2xy)的值为 10点评: 整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点代入求值时要化简

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。