ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:1.04MB ,
资源ID:2314224      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2314224.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学函数解题技巧方法总结(高考).doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高中数学函数解题技巧方法总结(高考).doc

1、1高中数学函数知识点总结1. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)2. 求函数的定义域有哪些常见类型?例 : 函 数 的 定 义 域 是yx432lg ( 答 : , , , )0234函数定义域求法: 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。 正切函数 xytankxR,2,且 余切函数 cot,且 反三角函数的定义域函数 yarcsinx 的定义域是 1, 1 ,值域是 ,函数 yarccosx 的定

2、义域是 1, 1 ,值域是 0, ,函数 yarctgx 的定义域是 R ,值域是 .,函数 yarcctgx 的定义域是 R ,值域是 (0, ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。3. 如何求复合函数的定义域? 的 定, 则 函 数,的 定 义 域 是如 : 函 数 )()(0)( xfxFabxf 义域是_。 ( 答 : , )复合函数定义域的求法:已知 的定义域为 ,求 的定义域,可由)(xfynm,)(xgfy解出 x 的范围,即为 的定义域。nxgm)( g例 若函数 的定义域为 ,则 的定义域为

3、 。)(fy2,1)(log2xf分析:由函数 的定义域为 可知: ;所以 中有 。)(xf,1)(log2xfy2log1x解:依题意知: 2log1x解之,得 422 的定义域为)(log2xf42|x4、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数 y= 的值域x12、配方法配方法是求二次函数值域最基本的方法之一。例、求函数 y= -2x+5, x -1,2的值域。23、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂.

4、12.22222ba y型 : 直 接 用 不 等 式 性 质k+x型 ,先 化 简 , 再 用 均 值 不 等 式mn 例 : y1xc 型 通 常 用 判 别 式nxdy型 法 一 : 用 判 别 式法 二 : 用 换 元 法 , 把 分 母 替 换 掉x1( +) ( x1) 1 例 : y( x+) 24、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数 y= 值域。6543x5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数 y= , , 的值域。1x

5、e2sin1y2sin1coy32 22102sin1|si|,2(cos)1cosins14()1,sin()4sin()4即又 由 知解 不 等 式 , 求 出 , 就 是 要 求 的 答 案xxeyyyyyxxy6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容例求函数 y= (2x10)的值域5xlog31x7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数 y=x+ 的值域。1x8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式

6、直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点 P(x.y)在圆 x2+y2=1 上,2,(2),(,0, (1)的 取 值 范 围y-的 取 值 范 围 解 :()令 则 是 一 条 过 -的 直 线 . d为 圆 心 到 直 线 的 距 离 R为 半 径 )2)令 y-即 也 是 直 线 d xykxxRbyxR例求函数 y= + 的值域。2)8(2解:原函数可化简得:y=x-2+x+8 4上式可以看成数轴上点 P(x)到定点 A(2) ,B(-8)间的距离之和。由上图可知:当点 P 在线段 AB 上时,y=x-2+x+8=AB=10当点 P 在线段

7、 AB 的延长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域为:10,+)例求函数 y= + 的值域1362x542x解:原函数可变形为:y= +)0(2)10(22上式可看成 x 轴上的点 P(x,0)到两定点 A(3,2) ,B(-2,-1)的距离之和,由图可知当点 P 为线段与 x 轴的交点时, y =AB= = ,min )12(343故所求函数的值域为 ,+) 。43注:求两距离之和时,要将函数 9 、不等式法利用基本不等式 a+b2 ,a+b+c3 (a,b,c ) ,求函数的最值,其题型特征解abc3R析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时

8、须要用到拆项、添项和两边平方等技巧。例: 3()12x(3-)0=1. 排除选项 C,D.现在看值域。原函数至于为 y=1,则反函数定义域为 x=1, 答案为 B.我题目已经做完了, 好像没有动笔(除非你拿来写*书) 。思路能不能明白呢?7. 反函数的性质有哪些?反函数性质:1、 反函数的定义域是原函数的值域 (可扩展为反函数中的 x 对应原函数中的 y)2、 反函数的值域是原函数的定义域(可扩展为反函数中的 y 对应原函数中的 x)3、 反函数的图像和原函数关于直线=x 对称(难怪点(x,y)和点(y,x)关于直线 y=x 对称互为反函数的图象关于直线 yx 对称;保存了原来函数的单调性、奇

9、函数性; 设 的 定 义 域 为 , 值 域 为 , , , 则yf(x)ACaAbf(a)=bf1()aabafbf111(),由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数 ,则方程 的解 _.)24(log)(3xf 4)(1xfx8 . 如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得 x1,x2,找出 f(x1),f(x2)之间的大小关系可以变形为求 的正负号或者 与 1 的关系12()ff2(fx(2)参照图象:若函数 f(x)的图象关于点(a,b)对称,函数 f(x)在关于点(a,

10、0)的对称区间具有相同的单调性; (特例:奇函数)若函数 f(x)的图象关于直线 xa 对称,则函数 f(x)在关于点(a,0)的对称区间里具有相反的单调性。 (特例:偶函数)(3)利用单调函数的性质:函数 f(x)与 f(x)c(c 是常数)是同向变化的函数 f(x)与 cf(x)(c 是常数),当 c0 时,它们是同向变化的;当 c0 时,它们是反向变化的。如果函数 f1(x),f2(x)同向变化,则函数 f1(x)f2(x)和它们同向变化;(函数相加)如果正值函数 f1(x),f2(x)同向变化,则函数 f1(x)f2(x)和它们同向变化;如果负值函数 f1(2)与 f2(x)同向变化,

11、则函数 f1(x)f2(x)和它们反向变化;(函数相乘)函数 f(x)与 在 f(x)的同号区间里反向变化。1()fx若函数 u(x),x,与函数 yF(u),u(),()或 u(),()同向变化,则在,上复合函数 yF(x)是递增的;若函数 u(x),x,与函数 yF(u),u(),()或 u(),()反向变化,则在,上复合函数 yF(x)是递减的。 (同增异减)7若函数 yf(x)是严格单调的,则其反函数 xf 1 (y)也是严格单调的,而且,它们的增减性相同。如 : 求 的 单 调 区 间yxlog12( 设 , 由 则uux02且 , , 如 图 :l1221 u O 1 2 x 当

12、, 时 , , 又 , xuuy(log0112当 , 时 , , 又 , )2)9. 如何利用导数判断函数的单调性?在 区 间 , 内 , 若 总 有 则 为 增 函 数 。 ( 在 个 别 点 上 导 数 等 于abfxf()()0零 , 不 影 响 函 数 的 单 调 性 ) , 反 之 也 对 , 若 呢 ?x0值是( )如 : 已 知 , 函 数 在 , 上 是 单 调 增 函 数 , 则 的 最 大afa a013()A. 0 B. 1 C. 2 D. 3( 令 fxx()3302则 或a由 已 知 在 , 上 为 增 函 数 , 则 , 即fxa()1313f(g)g(x)fg(

13、x)f(x)+g(x)f(x)*g(x) 都是正数增 增 增 增 增增 减 减 / /减 增 减 / /减 减 增 减 减8a 的最大值为 3)10. 函数 f(x)具有奇偶性的必要(非充分)条件是什么?(f(x)定义域关于原点对称)若 总 成 立 为 奇 函 数 函 数 图 象 关 于 原 点 对 称fxffx()()若 总 成 立 为 偶 函 数 函 数 图 象 关 于 轴 对 称y注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。( ) 若 是 奇 函 数 且 定 义 域 中 有 原 点 , 则 。2f(x) f(0

14、)如 : 若 为 奇 函 数 , 则 实 数aax21( 为 奇 函 数 , , 又 , fRf() ()00即 , )aa2110又 如 : 为 定 义 在 , 上 的 奇 函 数 , 当 , 时 , ,fxxfxx()()()()01241求 在 , 上 的 解 析 式 。f()1( 令 , , 则 , ,xxfxx001241()又 为 奇 函 数 , ffxx()()24又 , , )ffxxx()()()01024111.判断函数奇偶性的方法一、 定义域法一个函数是奇(偶)函数,其定义域必关于原点对称,它是函数为奇(偶)函数的必要条件.若函数的定义域不关于原点对称,则函数为非奇非偶函

15、数.二、 奇偶函数定义法在给定函数的定义域关于原点对称的前提下,计算 ,然后根据函数的奇偶性的定义判断其奇偶)(xf性.9这 种 方 法 可 以 做 如 下 变 形f(x)+- =0奇 函 数偶 函 数f1 偶 函 数 (-)x奇 函 数f三、 复合函数奇偶性12. 你熟悉周期函数的定义吗?( 若 存 在 实 数 ( ) , 在 定 义 域 内 总 有 , 则 为 周 期TfxTffx0()()函数,T 是一个周期。 )如 : 若 , 则fxaf()( 答 : 是 周 期 函 数 , 为 的 一 个 周 期 )Tafx()()2我们在做题的时候,经常会遇到这样的情况:告诉你 f(x)+f(x+

16、t)=0,我们要马上反应过来,这时说这个函数周期 2t. 推导: ,()()0()(2)2fxfxt fxfxttt同时可能也会遇到这种样子:f(x)=f(2a-x),或者说 f(a-x)=f(a+x).其实这都是说同样一个意思:函数 f(x)关于直线对称, 对称轴可以由括号内的 2 个数字相加再除以 2 得到。比如,f(x)=f(2a-x),或者说 f(a-x)=f(a+x)就都表示函数关于直线 x=a 对称。如:()()()22(), ,()2),()2| ,fxxabfafbff xtxtaftbafbf 又 如 : 若 图 象 有 两 条 对 称 轴 ,即 ,令 则即所 以 函 数 以

17、 为 周 期 因 不 知 道 的 大 小 关 系为 保 守 起 见 我 加 了 一 个 绝 对 值13. 你掌握常用的图象变换了吗?联想点(x,y),(-x,y)fxy()与 的 图 象 关 于 轴 对 称f(g) g(x) fg(x)f(x)+g(x)f(x)*g(x)奇 奇 奇 奇 偶奇 偶 偶 非奇非偶奇偶 奇 偶 非奇非偶奇偶 偶 偶 偶 偶10联想点(x,y),(x,-y)fxfx()()与 的 图 象 关 于 轴 对 称联想点(x,y),(-x,-y)与 的 图 象 关 于 原 点 对 称联想点( x,y),(y,x)f y()与 的 图 象 关 于 直 线 对 称1联想点( x,

18、y),(2a-x,y)xaxa)与 的 图 象 关 于 直 线 对 称2联想点(x,y),(2a-x,0)ffx()()与 的 图 象 关 于 点 , 对 称0将 图 象 左 移 个 单 位右 移 个 单 位yayfax ()()上 移 个 单 位下 移 个 单 位byfxab()() 0(这是书上的方法,虽然我从来不用, 但可能大家接触最多,我还是写出来吧。对于这种题目,其实根本不用这么麻烦。你要判断函数 y-b=f(x+a)怎么由 y=f(x)得到,可以直接令 y-b=0,x+a=0,画出点的坐标。 看点和原点的关系,就可以很直观的看出函数平移的轨迹了。 )注意如下“翻折”变换:()|()|x|yfxf 把 轴 下 方 的 图 像 翻 到 上 面把 轴 右 方 的 图 像 翻 到 上 面如 : f()log21作 出 及 的 图 象yxxlog21 y y=log2x O 1 x 14. 你熟练掌握常用函数的图象和性质了吗? (k0) y=b O(a,b) O x x=a

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。