1、3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描
2、述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题) ,体会算法的思想,了解算法的含义。理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。理解并掌握几种基本的算法语句输入语句、输出语句、赋值语句、条件语句、循环语句。进一步体会算法的基本思想。4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。点是在具体问题的解
3、决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发
4、展有条理的思考与表达的能力,提高逻辑思维能力。1、结合熟悉的算法,把握算法的基本思想,学会用自然语言来描述算法。2、通过模仿、操作和探索,经历设计程序流程图表达解决问题的过程。在具体问题的解决过程中理解程序流程图的三种基本逻辑结构:顺序结构、条件结构、循环结构。3、通过实际问题的学习,了解构造算法的基本程序。4、经历将具体问题的程序流程图转化为程序语句的过程,理解几种基本算法语句输入语句、输出语句、赋值语句、条件语句、循环语句,体会算法的基本思想。5、需要注意的问题1) 从熟知的问题出发,体会算法的程序化思想,而不是简单呈现一些算法。2) 变量和赋值是算法学习的重点之一,因为设置恰当的变量,学
5、习给变量赋值,是构造算法的关键,应作为学习的重点。3) 不必刻意追求最优的算法,把握算法的基本结构和程序化思想才是我们的重点。3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!4) 本章所指的算法基本上是能在计算机上实现的算法。三、教学内容及课时安排:1.1 算法与程序框图 (约 2 课时)1.2 基本算法语句 (约 3 课时)1.3 算法案例 (约 5 课时)复习与小结 (约 2 课时)四、评价建议1重视对学生数学学习过程的评价关注学生在数学语言的学习过程中,是否对用集合语言描述数学和现实生
6、活中的问题充满兴趣;在学习过程中,能否体会集合语言准确、简洁的特征;是否能积极、主动地发展自己运用数学语言进行交流的能力。2正确评价学生的数学基础知识和基本技能关注学生在本章(节)及今后学习中,让学生集中学习算法的初步知识,主要包括算法的基本结构、基本语句、基本思想等。算法思想将贯穿高中数学课程的相关部分,在其他相关部分还将进一步学习算法111 算法的概念一、教学目标:1、知识与技能:(1)了解算法的含义,体会算法的思想。 (2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。 (4)会写出解线性方程(组)的算法。 (5)会写出一个求有限整数序列中的最大值的算法。 (6)会应用 Sc
7、ilab 求解方程组。2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。二、重点与难点:重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。难点:把自然语言转化为算法语言。三、学法与教学用具:学法:1、
8、写出的算法,必须能解决一类问题(如:判断一个整数 n(n1)是否为质数;求任意一个方程的近似解;),并且能够重复使用。2、要使算法尽量简单、步骤尽量少。3、要保证算法正确,且计算机能够执行,如:让计算机计算 12345 是可以做到的,但让计算机去执行“倒一杯水” “替我理发”等则是做不到的。教学用具:电脑,计算器,图形计算器四、教学设想:1、 创设情境:算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!算法概念。但是我们
9、却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。2、 探索研究算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌
10、曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。3、 例题分析:例 1 任意给定一个大于 1 的整数 n,试设计一个程序或步骤对 n 是否为质数 1做出判定。算法分析:根据质数的定义,很容易设计出下面的步骤:第一步:判断 n 是否等于 2,若 n=2,则 n 是质数;若 n2,则执行第二步。第二步:依次从 2 至(n-1)检验是不是 n 的因数,即整除 n 的数,若有这样的数,则 n 不是质数;若没有这样的数,则 n 是质数。这是判断一个大于 1 的整数 n 是否为质数的最基本算法。例
11、2 用二分法设计一个求议程 x22=0 的近似根的算法。算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过 0.005,则不难设计出以下步骤:第一步:令 f(x)=x22。因为 f(1)0,所以设 x1=1,x 2=2。第二步:令 m=(x1+x2)/2,判断 f(m)是否为 0,若则,则 m 为所长;若否,则继续判断 f(x1)f(m)大于 0 还是小于 0。第三步:若 f(x1)f(m)0,则令 x1=m;否则,令 x2=m。第四步:判断|x 1x2|max, 则 max=b.S3 如果 Cmax, 则 max=c.S4 max 就是 a,b,c 中的最大值。综合
12、应用题例 5 写出求 1+2+3+4+5+6 的一个算法。分析:可以按逐一相加的程序进行,也可以利用公式 1+2+n= 进行,也可2)1(以根据加法运算律简化运算过程。解:算法 1:3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!S1:计算 1+2 得到 3;S2:将第一步中的运算结果 3 与 3 相加得到 6;S3:将第二步中的运算结果 6 与 4 相加得到 10;S4:将第三步中的运算结果 10 与 5 相加得到 15;S5:将第四步中的运算结果 15 与 6 相加得到 21。算法 2:
13、S1:取 n=6;S2:计算 ;)1(nS3:输出运算结果。算法 3:S1:将原式变形为(1+6)+(2+5)+(3+4)=37;S2:计算 37;S3:输出运算结果。小结:算法 1 是最原始的方法,最为繁琐,步骤较多,当加数较大时,比如1+2+3+10000,再用这种方法是行不通的;算法 2 与算法 3 都是比较简单的算法,但比较而言,算法 2 最为简单,且易于在计算机上执行操作。学生做一做 求 1357911 的值,写出其算法。老师评一评 算法 1;第一步,先求 13,得到结果 3;第二步,将第一步所得结果 3 再乘以 5,得到结果 15;第三步,再将 15 乘以 7,得到结果 105;第
14、四步,再将 105 乘以 9,得到 945;第五步,再将 945 乘以 11,得到 10395,即是最后结果。算法 2:用 P 表示被乘数,i 表示乘数。S1 使 P=1。S2 使 i=3S3 使 P=PiS4 使 i=i+2S5 若 i11,则返回到 S3 继续执行;否则算法结束。小结 由于计算机动是高速计算的自动机器,实现循环的语句。因此,上述算法 2 不仅是正确的,而且是在计算机上能够实现的较好的算法。在上面的算法中,S3,S4,S5 构成一个完整的循环,这里需要说明的是,每经过一次循环之后,变量 P、i 的值都发生了变化,并且生循环一次之后都要在步骤 S5 对 i 的值进行检验,一旦发
15、现 i 的值大于 11 时,立即停止循环,同时输出最后一个 P 的值,对于循环结构的详细情况,我们将在以后的学习中介绍。3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!4、课堂小结本节课主要讲了算法的概念,算法就是解决问题的步骤,平时列论我们做什么事都离不开算法,算法的描述可以用自然语言,也可以用数学语言。例如,某同学要在下午到体育馆参加比赛,比赛下午 2 时开始,请写出该同学从家里发到比赛地的算法。若用自然语言来描述可写为(1)1:00 从家出发到公共汽车站(2)1:10 上公共汽车(3)
16、1:40 到达体育馆(4)1:45 做准备活动。(5)2:00 比赛开始。若用数学语言来描述可写为:S1 1:00 从家出发到公共汽车站S2 1:10 上公共汽车S3 1:40 到达体育馆S4 1:45 做准备活动S5 2:00 比赛开始大家从中要以看出,实际上两种写法无本质区别,但我们在书写时应尽量用教学语言来描述,它的优越性在以后的学习中我们会体会到。5、自我评价 1、写出解一元二次方程 ax2+bx+c=0(a0)的一个算法。2、写出求 1 至 1000 的正数中的 3 倍数的一个算法(打印结果)6、评价标准1、解:算法如下S1 计算=b 2-4acS2 如果0,则方程无解;否则 x1=
17、S3 输出计算结果 x1,x2 或无解信息。2、解:算法如下:S1 使 i=1S2 i 被 3 除,得余数 rS3 如果 r=0,则打印 i,否则不打印S4 使 i=i+1S5 若 i1000,则返回到 S2 继续执行,否则算法结束。7、作业:1、写出解不等式 x2-2x-30 的不等式的解的步骤(为方便,我们设 a0)如下:第一步:计算= ;acb42第二步:若0,示出方程两根 (设 x1x2) ,则不等式解集abx242,1为 x | xx1或 xx2;第三步:若= 0,则不等式解集为 x | xR 且 x ;第四步:若0,则不等式的解集为 R。2、求过 P(a1,b1)、Q( a2,b2
18、)两点的直线斜率有如下的算法:第一步:取 x1= a1, y1= b1, x2= a2, y1= b2;第二步:若 x1= x2;第三步:输出斜率不存在;第四步:若 x1 x2;第五步:计算 ;1yk第六步:输出结果。3、写出求过两点 M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。解:算法:第一步:取 x1=-2, y1=-1, x2=2, y2=3;第二步:计算 ;22y第三步:在第二步结果中令 x=0 得到 y 的值 m,得直线与 y 轴交点(0,m);第四步:在第二步结果中令 y=0 得到 x 的值 n,得直线与 x 轴交点(n,0);第五步:计算 S= ;|1nm第六
19、步:输出运算结果11 2 程序框图( 第二、三课时 )一、教学目标:1、知识与技能:掌握程序框图的概念;会用通用的图形符号表示算法,掌握算法的三个基本逻辑结构;掌握画程序框图的基本规则,能正确画出程序框图。2、过程与方法:通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程;学会灵活、正确地画程序框图。3、情感态度与价值观:通过本节的学习,使我们对程序框图有一个基本的了解;掌握算法语言的三种基本逻辑结构,明确程序框图的基本要求;认识到学习程序框图是我们学习计算机的一个基本步骤,也是我们学习计算机语言的必经之路。3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!
20、3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!二、重点与难点:重点是程序框图的基本概念、基本图形符号和 3 种基本逻辑结构,难点是能综合运用这些知识正确地画出程序框图。三、学法与教学用具:1、通过上节学习我们知道,算法就是解决问题的步骤,在我们利用计算机解决问题的时候,首先我们要设计计算机程序,在设计计算机程序时我们首先要画出程序运行的流程图,使整个程序的执行过程直观化,使抽象的问题就得十分清晰和具体。有了这个流程图,再去设计程序就有了依据,从而就可以把整个程序用机器语言表述出来,因此程序框图是我们设计程序的基本和开端。2、我们在学习这部分内容时,首先要弄清各种图
21、形符号的意义,明确每个图形符号的使用环境,图形符号间的联结方式。例如“起止框”只能出现在整个流程图的首尾,它表示程序的开始或结束,其他图形符号也是如此,它们都有各自的使用环境和作用,这是我们在学习这部分知识时必须要注意的一个方面。另外,在我们描述算法或画程序框图时,必须遵循一定的逻辑结构,事实证明,无论如何复杂的问题,我们在设计它们的算法时,只需用顺序结构、条件结构和循环结构这三种基本逻辑就可以了,因此我们必须掌握并正确地运用这三种基本逻辑结构。3、教学用具:电脑,计算器,图形计算器四、教学设想:1、创设情境:算法可以用自然语言来描述,但为了使算法的程序或步骤表达得更为直观,我们更经常地用图形
22、方式来表示它。基本概念:(1)起止框图: 起止框是任何流程图都不可缺少的,它表明程序的开始和结束,所以一个完整的流程图的首末两端必须是起止框。(2)输入、输出框: 表示数据的输入或结果的输出,它可用在算法中的任何需要输入、输出的位置。图 1-1 中有三个输入、输出框。第一个出现在开始后的第一步,它的作用是输入未知数的系数 a11,a12,a21,a22 和常数项 b1,b2,通过这一步,就可以把给定的数值写在输入框内,它实际上是把未知数的系数和常数项的值通知给了计算机,另外两个是输出框,它们分别位于由判断分出的两个分支中,它们表示最后给出的运算结果,左边分支中的输出分框负责输出 D0 时未知数
23、 x1,x2 的值,右边分支中的输出框负责输出D=0 时的结果,即输出无法求解信息。(3)处理框: 它是采用来赋值、执行计算语句、传送运算结果的图形符号。图1-1 中出现了两个处理框。第一个处理框的作用是计算 D=a11a22-a21a12 的值,第二个处理框的作用是计算 x1=(b1a22-b2a12)/D,x2=(b2a11-b1a21)/D 的值。(4)判断框: 判断框一般有一个入口和两个出口,有时也有多个出口,它是惟一的具有两个或两个以上出口的符号,在只有两个出口的情形中,通常都分成“是”与“否” (也可用“Y”与“N” )两个分支,在图 1-1 中,通过判断框对 D 的值进行判断,若
24、判断框中的式子是 D=0,则说明 D=0 时由标有“是”的分支处理数据;若 D0,则由标有“否”的分支处理数据。例如,我们要打印 x 的绝对值,可以设计如下框图。3eud 教育网 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!开始输入 x是 x0? 否打印 x -打印 x结束从图中可以看到由判断框分出两个分支,构成一个选择性结构,其中选择的标准是“x0” ,若符合这个条件,则按照“是”分支继续往下执行;若不符合这个条件,则按照“否”分支继续往下执行,这样的话,打印出的结果总是 x 的绝对值。在学习这部分知识
25、的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:(1)使用标准的图形符号。(2)框图一般按从上到下、从左到右的方向画。(3)除判断框外,大多数流程图符号只有一个进入点和一个退出点。判断框具有超过一个退出点的惟一符号。(4)判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。(5)在图形符号内描述的语言要非常简练清楚。2、典例剖析:例 1:已知 x=4,y=2,画出计算 w=3x+4y 的值的程序框图。解:程序框如下图所示:开始输入 4,2 4 和 2 分别是 x 和 y 的值w=34+42输出 w3eud 教育网
26、 http:/ 百万教学资源,完全免费,无须注册,天天更新!3eud 教育网 http:/ 教学资源集散地。可能是最大的免费教育资源网!p=(2+3+4)/2输出 s输入 a,b,c结束 小结:此图的输入框旁边加了一个注释框 ,它的作用是对框中的数据或内容进行说明,它可以出现在任何位置。基础知识应用题1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。例 2:已知一个三角形的三边分别为 2、3、4,利用海伦公式设计一个算法,求出它的面积,并画出算法的程序框图。算法分析:这是一个简单的问题,只需先算出 p 的值,再将它代入公式,最后输出结果,只用顺序结构就能够表达出算法。程序框图:2)条件结构:一些简单的算法可以用顺序结构来表示,但是这种结构无法对描述对象进行逻辑判断,并根据判断结果进行不同的处理。因此,需要有另一种逻辑结构来处理这类问题,这种结构叫做条件结构。它是根据指定打件选择执行不同指令的控制结构。例 3:任意给定 3 个正实数,设计一个算法,判断分别以这 3 个数为三边边长的三角形是否存在,画出这个算法的程序框图。算法分析:判断分别以这 3 个数为三边边长的三角形是否存在,只需要验收这 3 个数当中任意两个数的和是否大于第 3 个数,这就需要用到条件结构。程序框图:开始s=p(p-2)(p-3)(p-4)结束开始
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。