ImageVerifierCode 换一换
格式:DOC , 页数:96 ,大小:6.98MB ,
资源ID:2315725      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2315725.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学高考知识点总结附有经典例题.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高中数学高考知识点总结附有经典例题.doc

1、- 1 -数 学- 2 -高一数学必修 1 知识网络集合12341 2nxABABn( ) 元 素 与 集 合 的 关 系 : 属 于 ( ) 和 不 属 于 ( )( ) 集 合 中 元 素 的 特 性 : 确 定 性 、 互 异 性 、 无 序 性集 合 与 元 素 ( ) 集 合 的 分 类 : 按 集 合 中 元 素 的 个 数 多 少 分 为 : 有 限 集 、 无 限 集 、 空 集( ) 集 合 的 表 示 方 法 : 列 举 法 、 描 述 法 ( 自 然 语 言 描 述 、 特 征 性 质 描 述 ) 、 图 示 法 、 区 间 法子 集 : 若 , 则 , 即 是 的 子

2、集 。、 若 集 合 中 有 个 元 素 , 则 集 合 的 子 集 有 个 , 注关 系集 合 集 合 与 集 合 0 (2-1)23, ,.4/ nCCAABxBBAxA 真 子 集 有 个 。、 任 何 一 个 集 合 是 它 本 身 的 子 集 , 即 、 对 于 集 合 如 果 , 且 那 么、 空 集 是 任 何 集 合 的 ( 真 ) 子 集 。真 子 集 : 若 且 ( 即 至 少 存 在 但 ) , 则 是 的 真 子 集 。集 合 相 等 : 且 定 义 : 且交 集 性 质 : , , ,运 算 ,/()()()-()/ ()()UUUUUABBBCardABardCar

3、dxAACAC ,定 义 : 或并 集 性 质 : , , , , , 定 义 : 且补 集 性 质 : , , , , ()()- 3 -函数 ,AB Axy fBBxyxfy yxy映 射 定 义 : 设 , 是 两 个 非 空 的 集 合 , 如 果 按 某 一 个 确 定 的 对 应 关 系 , 使 对 于 集 合 中 的 任 意 一 个 元 素 , 在 集 合 中 都 有 唯 一 确 定 的 元 素 与 之 对 应 , 那 么 就 称 对 应 : 为 从 集 合 到 集 合 的 一 个 映 射传 统 定 义 : 如 果 在 某 变 化 中 有 两 个 变 量 并 且 对 于 在 某

4、个 范 围 内 的 每 一 个 确 定 的 值 ,定 义 按 照 某 个 对 应 关 系 都 有 唯 一 确 定 的 值 和 它 对 应 。 那 么 就 是 的 函 数 。 记 作函 数 及 其 表 示函 数 ()., ,()()(), ,1212()() , ,fxabaxbfxfxfxababff ab近 代 定 义 : 函 数 是 从 一 个 数 集 到 另 一 个 数 集 的 映 射 。定 义 域函 数 的 三 要 素 值 域 对 应 法 则解 析 法函 数 的 表 示 方 法 列 表 法图 象 法单 调 性函 数 的 基 本 性 质 传 统 定 义 : 在 区 间 上 , 若 如 ,

5、 则 在 上 递 增 是 递 增 区 间 ; 如 , 则 在 上 递 减 是 的 递 减 区 间 。导 数 定 义 : 在 区 间 () 1 ()2 () ()00, 0() ()0() ,yfxI MxIfxMxIfxMyff abfxfabab 最 大 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 大 值最 值 最 上 , 若 , 则 在 上 递 增 ,是 递 增 区 间 ; 如 则 在 上 递 减 是 的 递 减 区 间 。 () ()() ()(1)

6、()(), ()2f I N IfNIfNfxfxfxDfx 小 值 : 设 函 数 的 定 义 域 为 , 如 果 存 在 实 数 满 足 : ( ) 对 于 任 意 的 , 都 有 ; ( ) 存 在 , 使 得 。 则 称 是 函 数 的 最 小 值定 义 域 , 则 叫 做 奇 函 数 , 其 图 象 关 于 原 点 对 称 。奇 偶 性 定 义 域 , 则 叫 做 偶 函 数 , 其 图() ()()0)()()1 , ()12 yfx fxTfxTfx TTfxyxaxyfxaa 象 关 于 轴 对 称 。 奇 偶 函 数 的 定 义 域 关 于 原 点 对 称周 期 性 : 在

7、函 数 的 定 义 域 上 恒 有 的 常 数 则 叫 做 周 期 函 数 , 为 周 期 ; 的 最 小 正 值 叫 做 的 最 小 正 周 期 , 简 称 周 期( ) 描 点 连 线 法 : 列 表 、 描 点 、 连 线向 左 平 移 个 单 位 :向 右 平 移 个平 移 变 换函 数 图 象 的 画 法 ( ) 变 换 法 , ()1 1011/ ()01)bxbbfyyxxwwwxwyfxyAA单 位 :向 上 平 移 个 单 位 :向 下 平 移 个 单 位 :横 坐 标 变 换 : 把 各 点 的 横 坐 标 缩 短 ( 当 时 ) 或 伸 长 ( 当 时 ) 到 原 来 的

8、 倍 ( 纵 坐 标 不 变 ) , 即伸 缩 变 换 纵 坐 标 变 换 : 把 各 点 的 纵 坐 标 伸 长 ( 或 缩 短 ( 到/()122100(,) 2(2)0 001()12(0 022010 Ayyfxxxxy yfxyyyfxyxxy yfyyy 原 来 的 倍 ( 横 坐 标 不 变 ) , 即关 于 点 对 称 :关 于 直 线 对 称 :对 称 变 换 关 于 直 线 对 称 : )1()xfx 关 于 直 线 对 称 :附:- 4 -一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底

9、数大于零且不等于 1;5、三角函数正切函数 中tanyx;余切函数 中;6、如果函数是由实际意义确定的解析式,应依据()xkZcotyx自变量的实际意义确定其取值范围。二、函数的解析式的常用求法:1、定义法;2、换元法;3、待定系数法;4、函数方程法;5、参数法;6、配方法三、函数的值域的常用求法:1、换元法;2、配方法;3、判别式法;4、几何法;5、不等式法;6、单调性法;7、直接法四、函数的最值的常用求法:1、配方法;2、换元法;3、不等式法;4、几何法;5、单调性法五、函数单调性的常用结论:1、若 均为某区间上的增(减)函数,则 在这个区间上也为增(减)(),fxg()fxg函数2、若

10、为增(减)函数,则 为减(增)函数()f ()fx3、若 与 的单调性相同,则 是增函数;若 与 的单调性不xg()yfg()fxg同,则 是减函数。()yf4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。六、函数奇偶性的常用结论:1、如果一个奇函数在 处有定义,则 ,如果一个函数 既是奇函数又0x(0)f()yfx是偶函数,则 (反之不成立)()f2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。3、一个奇函数与一个偶函数的积(商)为奇函数。4、两个函数 和 复合而成的函数

11、,只要其中有一个是偶函数,那么该复()yfu()gx合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。5、若函数 的定义域关于原点对称,则 可以表示为()fx()fx,该式的特点是:右端为一个奇函数和一个11()()22f fx偶函数的和。- 5 -, ()0 ()(), ()()0, (,)0,()0yfxfxxyfxfab fafbyfx cabfccfxf 零 点 : 对 于 函 数 ( ) 我 们 把 使 的 实 数 叫 做 函 数 的 零 点 。定 理 : 如 果 函 数 在 区 间 上 的 图 象 是 连 续 不 断 的 一 条 曲 线 , 并 且 有零 点 与 根 的

12、 关 系 那 么 , 函 数 在 区 间 内 有 零 点 。 即 存 在 使 得 这 个 也 是 方 程 的 根 。 ( 反 之 不 成 立 )关 系 : 方 程函 数 与 方 程函 数 的 应 用 () ()(1),()()0,2(,);(3)()0,(), (,)0()()0,yfxyfxxabfafbcfcf cfaf bcxabfcfba有 实 数 根 函 数 有 零 点 函 数 的 图 象 与 轴 有 交 点确 定 区 间 验 证 给 定 精 确 度 ;求 区 间 的 中 点计 算 ;二 分 法 求 方 程 的 近 似 解 若 则 就 是 函 数 的 零 点 ; 若 则 令 ( 此

13、时 零 点 ) ; 若 则 令 ( 此 时 零 点 (,)(4) -, ();24cb ab ) ;判 断 是 否 达 到 精 确 度 : 即 若 则 得 到 零 点 的 近 似 值 或 否 则 重 复 。几 类 不 同 的 增 长 函 数 模 型函 数 模 型 及 其 应 用 用 已 知 函 数 模 型 解 决 问 题建 立 实 际 问 题 的 函 数 模 型 ,(0,)(),(1)1lo mnaanarsrsQbbxyaax 根 式 : 为 根 指 数 , 为 被 开 方 数分 数 指 数 幂指 数 的 运 算指 数 函 数 性 质定 义 : 一 般 地 把 函 数 且 叫 做 指 数 函

14、 数 。指 数 函 数 性 质 : 见 表对 数 :基 本 初 等 函 数 对 数 的 运 算对 数 函 数 g,()llog;l .l;(0,1,0,)ogl()1caNMNnaMyxbcb为 底 数 , 为 真 数性 质 换 底 公 式 :定 义 : 一 般 地 把 函 数 且 叫 做 对 数 函 数对 数 函 数 性 质 : 见 表 且yx 幂 函 数 定 义 : 一 般 地 , 函 数 叫 做 幂 函 数 , 是 自 变 量 , 是 常 数 。性 质 : 见 表 2- 6 -表1 指数函数 0,1xya对数数函数 log0,1ayxa定义域R,值域 0,yyR图象过定点 (0,1) 过

15、定点 (1,0)减函数 增函数 减函数 增函数(,0)(,)xy时 ,时 , (,)(0,1)xy时 ,时 , (,)(,)xy时 ,时 , (,)(,0)xy时 ,时 ,性质 abababab表 2 幂函数 ()yxRpq0111为 奇 数为 奇 数奇函数- 7 -pq为 奇 数为 偶 数pq为 偶 数为 奇 数偶函数第一象限性质 减函数 增函数 过定点 01( , )- 8 -高中数学必修 2 知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾斜角为 0 度。因此,倾斜角的取值范围是 0180

16、(2)直线的斜率定义:倾斜角不是 90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 。斜率反映直线与轴的倾斜程度。tank当 时, ; 当 时, ; 当 时, 不存在。90,18,90k90过两点的直线的斜率公式: )(212xxyk注意下面四点:(1)当 时,公式右边无意义,直线的斜率不存在,倾斜角为 90;1(2)k 与 P1、P 2 的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。(3)直线方程点斜式: 直线斜率 k,且过点)(11xky1,yx注意:当直线的斜率为 0时,k=0,直

17、线的方程是 y=y1。当直线的斜率为 90时,直线的斜率不存在,它的方程不能用点斜式表示但因 l 上每一点的横坐标都等于 x1,所以它的方程是 x=x1。斜截式: ,直线斜率为 k,直线在 y 轴上的截距为 bbky两点式: ( )直线两点 ,1212212,1,x2,y截矩式: xab其中直线 与 轴交于点 ,与 轴交于点 ,即 与 轴、 轴的截距分别为 。l(0)ay(0)blxy,ab一般式: (A,B 不全为 0)CyA注意: 各式的适用范围 特殊的方程如: 1 2平行于 x 轴的直线: (b 为常数) ; 平行于 y 轴的直线: (a 为常数) ; (5)直线系方程:即具有某一共同性

18、质的直线(一)平行直线系平行于已知直线 ( 是不全为 0 的常数)的直线系:00yx0,(C 为常数)0yBxA(二)过定点的直线系()斜率为 k 的直线系: ,直线过定点 ;00xk0,yx()过两条直线 , 的交点的直线系方程为:11yxl :22CBAl( 为参数) ,其中直线 不在直线系中。2211yxl(6)两直线平行与垂直当 , 时,:bkl:bkl;212121,/1221l注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(7)两条直线的交点相交0:11CyBxAl 0:22CyBxAl- 9 -交点坐标即方程组 的一组解。02211CyBxA方程组无解 ; 方程组有

19、无数解 与 重合/l1l2(8)两点间距离公式:设 是平面直角坐标系中的两个点,12(,),x, ( )则 2|()Bxy(9)点到直线距离公式:一点 到直线 的距离0,P0:1CByAxl 20BACyxd(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。二、圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。2、圆的方程(1)标准方程 ,圆心 ,半径为 r;22rbyaxba,(2)一般方程 0FED当 时,方程表示圆,此时圆心为 ,半径为042FED2,EDFED4212当 时,表示一个点; 当 时,方程不表示任何图

20、形。042F(3)求圆方程的方法:一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,需求出 a,b,r ;若利用一般方程,需要求出 D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况,基本上由下列两种方法判断:(1)设直线 ,圆 ,圆心 到 l 的距离为0:CByAxl 22:rbyaxbaC,,则有 ; ;2bad相 离与lrd相 切与ld相 交与rd(2)设直线 ,圆 ,先将方程联立消元,得到一个一:l 22:元二次方程之后,令其中的判别式为 ,则有; ;

21、相 离与0相 切与l0相 交与l0注:如果圆心的位置在原点,可使用公式 去解直线与圆相切的问题,其中20ryx表示切点坐标,r 表示半径。,yx(3)过圆上一点的切线方程:圆 x2+y2=r2,圆上一点为(x 0,y 0),则过此点的切线方程为 (课本命题)20ryx圆(x-a) 2+(y-b)2=r2,圆上一点为(x 0, y0),则过此点的切线方程为(x 0-a)(x-a)+(y0-b)(y-b)= r2 (课本命题的推广)4、圆与圆的位置关系:通过两圆半径的和(差) ,与圆心距(d)之间的大小比较来确定。设圆 ,2121:rbyaxC222: RbyaxC两圆的位置关系常通过两圆半径的和

22、(差) ,与圆心距(d)之间的大小比较来确定。当 时两圆外离,此时有公切线四条;rRd当 时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当 时两圆相交,连心线垂直平分公共弦,有两条外公切线;当 时,两圆内切,连心线经过切点,只有一条公切线;当 时,两圆内含; 当 时,为同心圆。r0d三、立体几何初步1、柱、锥、台、球的结构特征- 10 -(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。表示:用各顶点字母,如五棱柱 或用对角线的端点字母,如五棱柱ED

23、CBA AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥 EBAP几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五

24、棱台 DC几何特征:上下底面是相似的平行多边形 侧面是梯形 侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:底面是一个圆;母线交于圆锥的顶点;侧面展开图是一个扇形。(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面展开图是一个弓形。(7)球体:定义:以半圆的直径所在直线为旋转轴,半

25、圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影) ;侧视图(从左向右) 、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。3、空间几何体的直观图斜二测画法斜二测画法特点:原来与 x 轴平行的线段仍然与 x 平行且长度不变;原来与 y 轴平行的线段仍然与 y 平行,长度为原来的一半。4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。(2)特殊几何体表面积公式(c 为底面周长,h 为高, 为斜高,l 为母线)hchS直 棱 柱 侧 面 积 rS2圆 柱 侧 21cS正 棱 锥 侧 面 积 rlS圆 锥 侧 面 积)(21正 棱 台 侧 面 积 lR)(圆 台 侧 面 积lr圆 柱 表 r圆 锥 表 22Rlr圆 台 表(3)柱体、锥体、台体的体积公式

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。