1、1求函数极限的方法和技巧摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。关键词:函数极限引言在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。主要内容一、求函数极限的方法1、运用极限的定义例: 用极限定义证明: 123lim2x证: 由 24x取 则当 时,就有020x132x由函数极限 定义有: 2123lim2x2、利用极限的四则运算性质若 Axf)(li0 Bxg)(li0(
2、I) 0x 0fxBAxg)(lim0(II) f x)(li)(lim000(III)若 B0 则:BAxgfxf)(li)(li00(IV) (c 为常数)fcfxxli00上述性质对于 时 也 同 样 成 立,例:求 453lim2x解: =li2x 25423、约去零因式(此法适用于 )型时 0,x例: 求 1267lim232xx解:原式= )0(5li 2232 xx= )6)(1li22xx3= =)65(103lim2xx )3(25lixx= 2lix74、通分法(适用于 型)例: 求 )214(lim2xx解: 原式= )(li2x= )(lim2xx= 41li2x5、利
3、用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质)设函数 f(x)、g(x) 满足:(I) 0)(lim0xf(II) (M 为正整数)Mg则: )(li0xfx例: 求 x1sinl解: 由 而 lim0x 1sinx故 原式 = 1sinl0x6、利用无穷小量与无穷大量的关系。4(I)若: 则 )(limxf 0)(1limxf(II) 若: 且 f(x)0 则 0)(lif )(1lixf例: 求下列极限 51limx1lix解: 由 故 )( 05lim由 故 =01lix 1x7、等价无穷小代换法设 都是同一极限过程中的无穷小量,且有:,, 存在,, lim则 也
4、存在,且有 = limlili例:求极限 20sinco1lxx解: ,si2 )(2x=20sinco1lmxx1)(2注: 在利用等价无穷小做代换时,一般只在以乘积形式出现时可以互换,若以和、差出现时,不要轻易代换,因为此时经过代换后,往往改变了它的无穷小量之比的“阶数”8、利用两个重要的极限。51sinlm)(0xAexBx)1(lim)但我们经常使用的是它们的变形: )(,)(1li)( 0,(si( xexB例:求下列函数极限xalim)1(0、 bxaxcoslni)2(0、)1ln( l)1( ,1 uaxauu于 是则) 令解 : ( auuaauxauln)1l(im)1ln
5、(i)1ln(imli0 000 故 有 : 时 ,又 当 )(cosli)2(0bxx、 原 式 1cs1cos)(lnim0axbxaxli0x 222020 )()(sin)(silmsinli abxbaxxx 9、利用函数的连续性(适用于求函数在连续点处的极限) 。6)(lim)(li)( )(li)( 00000 afxfxfauf axi fff xx处 连 续 , 则在 且是 复 合 函 数 , 又若 处 连 续 , 则在若例:求下列函数的极限(2) )1ln(5coslim)1(20xexx、 x)1ln(i0 1ln)1(limn)1l(i)1ln(im)l()l()2(6
6、01n5coslim)1ln(5cos)(000110 2 exxxxxfeefxxxxx x故 有 :令 、 由 有 :故 由 函 数 的 连 续 性 定 义 的 定 义 域 之 内 。属 于 初 等 函 数解 : 由 于10、变量替换法(适用于分子、分母的根指数不相同的极限类型)特别地有:m、n、k、 l 为正整数。nklxmkl1i例:求下列函数极限 、n xmnx(1li )N1)23(lixx解: 令 t= 则当 时 ,于是1t原式= nmtttttnmt )(li1li 121 由于 =)23(lixx 1)lix7令: 则 tx1221tx= =1)3(limxx 1)(lix2
7、10)(limtt= etttt )(li)(li2101011、 利用函数极限的存在性定理定理: 设在 的某空心邻域内恒有 g(x)f(x)h(x) 且有:0xAxhgx)(lim)(li00则极限 存在, 且有0fxfx)(li0例: 求 (a1,n0)xnalim解: 当 x1 时,存在唯一的正整数 k,使k xk+1于是当 n0 时有:knxna)1(及 knkxn1又 当 x 时,k 有knka)(lim0)(li1aakn及 1liknlikn8=0xnalim12、用左右极限与极限关系(适用于分段函数求分段点处的极限,以及用定义求极限等情形)。定理:函数极限 存在且等于 A 的充
8、分必要条件是左极限 及右极)(li0xf )(lim0xfx限 都存在且都等于 A。即有:)(lim0xfx= =A0 )(li0xfx)(lim0f例:设 = 求 及)(f1,22xe)(li0xf)(lim1f1)(lim)(li)(lim000 xxfexx x解 :由 1f)(li0fx不 存 在由(又 )(lim)01lili 0)1lim121 11xff xxxx13、罗比塔法则(适用于未定式极限)定理:若9Axgfxffi xgxuxggfixxx)(lim)(li()l)( 0)()(0)li,0)(l) 0000 ) , 则或可 为 实 数 , 也 可 为内 可 导 , 且
9、的 某 空 心 邻 域在与此定理是对 型而言,对于函数极限的其它类型,均有类似的法则。注:运用罗比塔法则求极限应注意以下几点:1、 要注意条件,也就是说,在没有化为 时不可求导。,02、 应用罗比塔法则,要分别的求分子、分母的导数,而不是求整个分式的导数。3、 要及时化简极限符号后面的分式,在化简以后检查是否仍是未定式,若遇到不是未定式,应立即停止使用罗比塔法则,否则会引起错误。4、当 不存在时,本法则失效,但并不是说极限不存在,此时求极限须)(limxgfax用另外方法。例: 求下列函数的极限 )1ln(2i0xex )0,(lnimxax解:令 f(x)= , g(x)= l21)()2,
10、 )(xexf 2(xg2“23“ )1(),)1(fx 由于 0(,0) gf但 2),0(“gf从而运用罗比塔法则两次后得到1012)1(2lim12)(lim)1ln(2im302100 xexexe xxx 由 故此例属于 型,由罗比塔法则有:axxli,li )0,(1limlinlim1 xaxaxax14、利用泰勒公式对于求某些不定式的极限来说,应用泰勒公式比使用罗比塔法则更为方便,下列为常用的展开式:1、 )(!2nx xoe2、 )()!12()!53sin 2nnxox3、 )!(!421co 2nnxx4、 1)ln( nno5、 )(!)1()(!2)(1 nxoxx 6、 no上述展开式中的符号 都有:)(nxo0)(lim0nxo例:求 )0(2li0axax解:利用泰勒公式,当 有
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。