1、勾股定理宝盖中学 袁静尊敬的各位评委、各位老师:大家好!我是来自宝盖中学的袁静,我今天说课的内容是华师版九年义务教育课程标准实验教科书数学八年级下册第十四章第一节第一课时勾股定理,勾股定理揭示了直角三角形三边之间的一种美妙关系,将形与数密切联系起来,在数学的发展和现实世界中有着广泛的作用。本节是直角三角形相关知识的延续,同时也是学生认识无理数的基础,充分体现了数学知识承前启后的紧密相关性、连续性。此外,历史上勾股定理的发现反映了人类杰出的智慧,其中蕴涵着丰富的科学与人文价值。下面我将从教材分析、学情分析、教学方法、教学过程、教学评价等五个方面对本节课的教学设计进行说明。一、教材分析(一)教材的
2、地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形取得进一步的认识和理解。(二)教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。1、知识与技能: 掌握直角三角形三边之间的数量关系,学会用符号表示边长。学生在经历用数格子与割补等办法探索勾股定理的过程中,体会数形结合的思想,体验从特殊到一般的逻辑推理过程。2、能力目标:通过拼图活动,体验数学思维的严谨性,发展形象思维。并通过分层训练,使学生学会熟练运用勾股定理进行简单的计算,在解决
3、实际问题中掌握勾股定理的应用技能。3、情感目标:通过数学史上对勾股定理的介绍,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。使学生从经历定理探索的过程中,感受数学之美,探究之趣,培养合作意识和探索精神。(三)教学重、难点重点:用面积法探索勾股定理,理解并掌握勾股定理难点:用拼图方法证明勾股定理二、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足
4、他们的创造愿望。三、教学方法 本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。四、教学过程(一) 、创设情境,引入新课(师)教师引导学生观察图画,在 2002 年的国际数学家大会上采用弦图作为会徽,它为什么有如此大的魅力呢?它蕴涵着怎样迷人的奥妙呢?这节课我就带领大家一起探索勾股定理。(设计意图:用生动有趣的图画,点燃学生的求知欲,以景激情,以情激思,引领学生进入学习情境。 )(二) 、师生互动,探究新知活动 1:毕达哥拉斯是古希腊著名的数学家。相传在 2500 年以前,他在朋友家做客时,发现朋
5、友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面 图 18.1-1(2)你能找出下图中正方形 S1、S2 、S3 面积之间的关系吗?图 1 图 2正方形(面积)S1 S2 S3 图 1 4 4 8 图 2 9 9 18 (3)图中正方形 A、B、C 所围等腰直角三角形三边之间有什么特殊关系?活动 2: 等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方” 呢?如右图所示,每个小方格的面积均为 1,以格点为顶点,有一个直角边分别是 3、4 的直角三角形。仿照上一活动,我们以这个直角三
6、角形的三边为边长向外作正方形。(2)想一想,怎样利用小方格计算正方形 S1、S2、S3 面积?222abc正方形(面积) S1 S2 S3 一般直角三角形 9 12 25 活动 3得出结论:如果直角三角形两直角边分别为 a,b,斜边为 c,那么 勾股定理: 即直角三角形两直角边的平方和等于斜边的平方。(师)在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾“ ,下半部分称为“股 “。我国古代学者把直角三角形较短的直角边称为“ 勾”,较长的直角边称为“ 股” ,斜边称为 “弦”。所以我国古代把上面的定理称为 “勾股定理” 。再请学生看一看,读一读:早在三千多年前周朝数学家商高就提出勾三、股四、
7、弦五,并在后来被记载在中国古代著名数学著作周髀算经之中,一千多年后西方的毕达哥拉斯证明了此定理。222abc222abc(设计意图:在探索定理的过程中, 为了突出本节重点,解决难点,我将按下面两个层次设计探索过程。第一方面由等腰直角三角形到一般直角三角形三边关系的研究,体现从特殊到一般的方法,第二方面引导学生用割、补等方法计算正方形 C 面积到用拼图的方法探索直角三角形三边关系,展示由简单到复杂的思想,探索出勾股定理。 )(三) 、回归生活,应用新知例 1、如图所示,将长为 5.41 米的梯子 AC 斜靠在墙上,BC 长为 2.16 米,求梯子上端 A 到墙的底边的垂直距离AB。 (精确到 0
8、.01 米)解:例 2、在 RtABC 中,=90.(1) 已知: a=6,=8,求 c; (2) 已知: c=13,b=5,求 a;(3) 已知: a:b=3:4, c=15,求 a、b方法总结:(1)在直角三角形中,已知两边,可求第三边;(2)可用勾股定理建立方程. 随堂练习要求:面向全体学生,部分学生可选择从自己需要的层次做起。A 层: 1、 在 ABC 中,C=90(1)若 a=6,b=10,则 c= ; (2)若a=24,c=25,b= 。2、若直角三角形中,有两边长是 3 和 4,则第三边长的平方为( )A 25 B 14 C 7 D 7 或253、求下列图中未知数 X,Y 的值
9、(设计意图:本层是基础性习题,强化学生掌握在直角三角形中已知任意两边,都能利用勾股定理求出第三边的重要解题方法,以及定理的实际应用。以当堂检测学生的达标情况。 ) B 层:情景探索1、小明的妈妈买来一部 29 英寸(74 厘米)的电视机,小明量了电视机的荧屏后,发现荧屏只有 58 厘米长46 厘米宽,他认为售货员搞错了对不对?(582=3364 462=2116 74.0325480 )2、两个边长分别为 4 个单位和 3 个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得图形拼成一个正方形。(设计意图:本层题目难度稍有提高,加强探索性和趣味性,以检测学生对定理灵活运用能力。 )C 层
10、:阅读分析题:迄今为止,关于勾股定理的证明方法已有 500 余种。其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。下面我们一起来了解这一证法。 abcba21)(212 2此证明方法的核心思想是“面积之间的等量关系” 。(设计意图:本层题目面向学有余力的学生,注重思维开放性的培养。其中勾股定理总统证法和弦图证法,不但拓展了学生的视野,激发了学生的探究热情,而且使学生感受到勾股定理证明的博大精深。 )四、感悟收获,布置作业:1、你这节课的主要收获是什么?2、该定理揭示了哪一类三角形中的什么元素之间
11、的关系?3、在探索和验证定理的过程中,我们运用了哪些方法?4、你最有兴趣的是什么?你有没有感到困难的地方? 课后作业:1、将课堂训练和课本中未完成的题目练完。2、下图是历史上著名的“弦图” ,你能通过此图,利用面积之间的等量关系来证明勾股定理吗?3、在网上搜集有关勾股定理的资料和其它的验证方法。参考网址 http:/ http:/ 55-56 页阅读材料。(设计意图:梳理本节课的重要方法和知识点,加深对本节知识的理解。 )五、教学评价: 1、关注学生探索勾股定理的整个过程,了解学生的创造性解题思路,并及时给予引导和充分的肯定,同时记录在案。2、在分层训练中,对学生的不同水平的解答老师应给于肯定
12、和适当的鼓励,并记录在其成长记录袋中,以积累学生的学习成果。六、设计说明:1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题实验操作归纳验证分层训练布置作业五部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。2、探索定理采用了面积法,引导学生利用实验由特殊到一般对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。3、关于练习的设计,我采用分层训练,让不同的学生都学有所得,以达到因材施教的目的。4、
13、在课堂教学评价中,强调学生个体学习成果的积累,为终结性评价提供科学依据。设计意图: 强化过程 、突出重点。(三)教学评价过程性评价:1、关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积极思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;2、关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理。知识性评价:1、掌握勾股定理内容及证明,体会数形结合的思想2、熟练运用勾股定理解决实际问题,内化知识形成技巧学生评价:教师不是知识的占有者,也不是课堂上的主宰者,而是学习共同体的一员,在教学过程中难免会出现一些问题。例如
14、:学生对数学活动的兴趣,参与的热情不均衡;学生动手操能力有差别;学生在小组活动中能否敢于讲出自己的探索,猜想过程及结果等。学生在学习新知的过程中可能出现的典型错误主要是把定理中两直角边的平方和错误的理解成和的平方。自我评价:本节课在教学过程中设计的一系列的教学环节,充分体现了新课改的理念。“数因形而直观,形因数而入微”数形结合,由特殊到一般,突出重点,突破难点,抓住关键,课堂练习及时反馈,正确评价等等这一系列的教学环节的设计对培养学生思维和创新意识都起了非常重要的作用。在教学过程中,我始终:坚持一个原则教为主导,学为主体的原则坚守一个理念先学后教,以学定教的理念贯穿一个思想享受数学,快乐学习的思想在教学过程中,我重点关注学生的参与程度、思维方式、合作交流等情况,及时记录学生的独特想法,同时向学生渗透数学思想,改进学生的学习
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。