ImageVerifierCode 换一换
格式:DOC , 页数:14 ,大小:436.50KB ,
资源ID:2995457      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-2995457.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(塑性力学.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

塑性力学.doc

1、塑性力学suxing lixue塑性力学plasticity的一个分支,研究物体超过弹性极限后所产生的永久变形和作用力之间的关系以及物体内部和的分布规律。和的区别在于,塑性力学考虑物体内产生的永久变形,而弹性力学不考虑;和的区别在于,塑性力学考虑的永久变形只与应力和应变的历史有关而不随时间变化,而流变学考虑的永久变形与时间有关。塑性力学理论在工程实际中有广泛的应用。例如用于研究如何发挥材料的潜力,如何利用材料的塑性性质,以便合理选材,制定加工成型工艺。塑性力学理论还用于计算残余应力。基本实验和基本理论 对塑性变形基本规律的认识来自实验。从实验中找出在应力超出弹性极限后材料的特性,将这些特性进行

2、归纳并提出合理的假设和简化模型,确定应力超过弹性极限后材料的,从而建立塑性力学的基本方程。解出这些方程,便可得到不同塑性状态下物体内的应力和应变。基本实验 基本实验有两个:简单拉伸实验 对某些材料(如低碳钢)作简单拉伸实验,可得到如图 1简单拉伸实验应力-应变曲线所示的应力-应变曲线。实验表明,应力-应变曲线上存在一个称为弹性极限的应力值,若应力小于弹性极限,则加载和卸载的应力-应变曲线相同( 段); 若应力超过弹性极限,加载的应力-应变曲线有明显的转折,并出现一个水平的线段( ),常称为屈服阶段,相应的应力称为屈服极限。弹性极限、屈服极限的值相差不大,在工程上常取为一个值,仍称屈服极限,记为

3、 400-1 。材料中的应力达到屈服极限时,材料即进入塑性阶段。此阶段的最大特点是:加载和卸载的应力 -应变曲线不同。例如由图 1简单拉伸实验应力-应变曲线中 点卸载,应力与应变不是沿 kg2线而是沿 kg2线退回 kg2应力全部消失后,仍保留永久应变 。实验表明,在变形不大时,多数材料应力-应变曲线中的 与 接近平行, 以 表示塑性应变 , 表示弹性应变 ,则 点的应变为: 。如果从 点重新加载,开始时仍沿 变化,在回到 点后则按kg2 kg2变化并产生新的塑性变形。若在 kg2 卸载至kg2 ,则再加载时, 点的应力成为新的屈服极限,它高于初始屈服极限 400-1 。这一现象称为应变强化或

4、加工强化。 点的应力称为后继屈服极限或加载应力。对于均匀应力状态,外载全部卸除后,宏观应力等于零,但保留了宏观的残余应变。实际上,物体内部微观结构发生了变化,产生了微观的残余应力,它能在下次加载时扩大物体的弹性范围。J.包辛格于 1886 年发现,在卸载后施加反方向压力时,反向屈服极限降低了。这一现象后称为,它是上述微观残余应力造成的。由简单应力状态的应力-应变曲线可以看出,塑性力学问题有两个主要特点:一是应力与应变之间的关系是非线性的;二是应力与应变之间的关系不是单值对应的,而与加载历史有关。例如在图 1简单拉伸实验应力-应变曲线中,同一应力 视加载历史的不同可对应于 1、2、3 点的应变。

5、 因此塑性力学的问题是从某一已知初始状态开始,随着加载过程,用应力增量与应变增量的关系逐步求出每时刻的增量,累加起来得到物体内的最终应力和应变分布。静水压力实验 实验表明,静水压力可使材料的可塑性增加,原来处于脆性状态的材料可以转化成为塑性材料 但静水压力对金属材料的屈服极限影响不大(岩石材料则不同) 。平均正应力在几万个大气压以内时,金属材料的体积变化与平均正应力近似成正比。基本假设 为了简化计算,根据实验结果可以建立如下假设:材料是各向同性的和连续的,不考虑断裂。平均正应力不影响材料的屈服,它只与材料的体积应变有关,且体积应变是弹性的。材料的弹性性质不受塑性变形的影响。只考虑稳定材料,即不

6、考虑塑性应变的弱化阶段(图 1简单拉伸实验应力-应变曲线 中的 HK 段)。此外,在一般的塑性静力问题中,还假设时间因素对材料的性质没有影响。变形速度、应变率、应力率等概念往往只表示位移、应变、应力的增量,这些增量在多长时间内产生,对分析问题没有影响。以上假设适用于一般金属材料,对于岩土材料则需考虑平均正应力对屈服的影响以及弹塑性耦合问题。简化模型 塑性力学的应力应变曲线通常有如下五种简化模型:理想弹塑性模型 对低碳钢或强化性质不明显的材料,若应变不太大,则可忽略强化因素,而将实际应力-应变曲线(图 2理想弹塑性模型中虚线)简化为折线,如图 2理想弹塑性模型 所示,图中 0-1 线表示理想弹性

7、,1-2 线表示理想塑性。线性强化弹塑性模型 对有显著强化性质的材料,可用两条直线代替实际曲线 (图 3线性强化弹塑性模型)。理想刚塑性模型 对弹性应变比塑性应变小得多而且强化性质不明显的材料,可用水平直线代替实际曲线(图 4理想刚塑性模型)。线性强化刚塑性模型 对弹性应变比塑性应变小得多而且强化性质明显的材料,可用倾斜直线代替实际曲线(图 5线性强化刚塑性模型)。幂次强化模型 为简化计算中的解析式,可用幂次强化模型(图 6幂次强化模型 ),其解析表达式为 400-1 ( / 400-1 ) ,其中 400-1 为屈服应力; 400-1 为与 400-1相应的应变; 为材料常数。屈服条件和本构

8、关系 在复杂应力状态下,各应力分量成不同组合状况的以及应力分量和应变分量之间的塑性本构关系是塑性力学的主要研究内容,也是分析塑性力学问题时依据的物理关系。屈服条件是判断材料处于弹性阶段还是处于塑性阶段的判据。对金属材料,最常用的屈服条件有最大剪应力屈服条件(又称特雷斯卡条件)和弹性形变比能屈服条件(又称米泽斯条件)。这两个屈服条件数值接近,它们的数学表达式都不受静水压力的影响,而且基本符合实验结果。对于理想塑性模型,在经过塑性变形后,屈服条件不变。但如果材料具有强化性质,则屈服条件将随塑性变形的发展而改变,改变后的屈服条件称为后继屈服条件或加载条件(见)。反映塑性应力-应变关系的本构关系,一般

9、应以增量形式给出,这是因为塑性力学中需要考虑变形的历程,而增量形式可以反映出变形的历程,反映塑性变形的本质。用增量形式表示塑性本构关系的理论称为。研究表明,应力和应变的增量关系与屈服条件有关。增量理论的本构关系在理论上是合理的,但应用起来比较麻烦,因为需要积分整个变形路径才能得到最后的结果。因此,在塑性力学中又发展出,即采用全量形式表示塑性本构关系的理论。在单向应力状态下,若限定应力只增不减(即只加载不卸载),则应力全量与应变全量之间就有直接关系,如同非线性弹性关系那样。在复杂应力状态下,若各应力分量按一定比例增长(称为比例加载)而不卸载,则可将增量关系积分得全量关系。但一般情形下,各应力分量

10、之间的比例是有变化的,严格说来,不能得出全量关系。然而全量关系使用方便,因而常用于求解实际问题。研究表明:在偏离比例加载不大时,全量理论的计算结果和实验接近,至于允许偏离的程度,尚无定量的标准。解决塑性力学的边值问题,所使用的平衡方程、几何方程(即应变和位移的关系)以及力和位移的边界条件都和弹性力学中所使用的相同,但在物理关系上则应以全量理论或增量理论的塑性本构关系代替弹性力学中的广义胡克定律(见)。利用平衡方程、几何方程、物理关系和所有边界条件可以求得超过屈服极限后的应力和应变分布以及内力和外载荷之间的关系。但是塑性力学的本构关系是非线性的,在具体计算边值问题时会遇到一些数学上的困难,因此在

11、塑性力学中还要根据所研究问题的具体情况,找出解决方法。研究内容 除上述基本理论以外,塑性力学还包括以下研究内容:简单弹塑性问题 经过简化只剩下一个独立变量的问题。这类问题有:的弹塑性弯曲问题 如果象处理弹性弯曲问题一样引用,则梁的弹塑性弯曲问题就成为一维问题。在弯矩 的作用下,梁截面上的正应力分布为 = /,其中 为梁纵轴坐标, 为截面上的坐标, =0 对应于中性轴, 为截面绕中性轴的惯性矩。对一个宽为 、高为 的矩形截面梁, = /12。当最外层纤维的应力达到屈服极限 400-1 时,作用在截面上的弯矩为弹性极限弯矩 = 400-1/6。如果弯矩继续增加,则外层纤维首先进入塑性变形阶段,从梁

12、截面上看,塑性变形区随弯矩的增加向中心发展,纯弹性变形区逐渐缩小。在极限情形,弹性区缩小为零。对于理想塑性材料,与极限情形对应的弯矩称为塑性极限弯矩,其值为 =1.5 。这一结果意味着,如果允许梁内发生塑性变形,矩形截面梁的抗弯矩能力最多可以提高 50。弯矩达到塑性极限弯矩前,梁的变形仍属弹性量级。因此,在设计中可让梁内发生部分塑性变形以提高梁的承载能力。一般说来,梁的静不定次数(见)愈高,承载能力提高的幅度愈大。受内压厚壁圆筒问题 研究对象是一个内半径为 ,外半径为 ,并且受内压kg2 kg2作用的长厚壁筒。这是一个轴对称问题,可在以筒轴为 kg2轴的柱坐标系( , , )中进行研究。若考虑

13、轴向应力 0 的情形,则壁内的两个主应力为 (0)和 (0),最大剪应力屈服条件可写成 = 400-1 。根据弹性分析可知, - 在内壁处最大 当压力 400-1 ( )/2 时,内壁开始产生塑性变形。塑性区随着压力的增加而向外扩展。在分析这一问题时,要区分弹性和塑性区,在不同区域中使用不同的应力-应变关系; 另外还要求各物理参量(应力、应变等)在弹性区和塑性区的交界面上满足连接条件和初始屈服条件。由这两个条件可定出弹塑性交界面的位置。对于理想塑性材料,当应力满足屈服条件时,材料可无限制地发生塑性变形。但实际上,塑性区的变形受到外层弹性区的约束,不能无限发展,材料处在约束塑性变形阶段。当塑性区

14、扩展到外边界 处时,外层的弹性约束消失,塑性变形可以自由发展,这时所对应的压力称为塑性极限压力,其值为 400-1 ln( / )。若在到达塑性极限压力前卸载,壁内就产生残余应力。再次加载时,应力将从这个残余应力上增长。和简单拉伸时的情形一样,残余应力可使弹性范围提高到卸载前的最高值。利用残余应力的这一特性,可以延长大炮筒及其他压力容器的使用寿命。长柱体的塑性自由扭转问题 按照弹性力学中解决此类问题的方法引进应力函数kg2 ( , )(见),把不为零的剪应力 、 表示为:452-p1 ,则平衡方程自动满足。最大剪应力 y1( + ) | kg2 |出现在柱体边界上,式中 kg2为梯度算符。当扭

15、矩增大到弹性极限时,边界上某些点处| kg2 |= 400-1 ,kg2 400-1 为剪切屈服极限,塑性变形首先在那些点产生。随着扭矩的增大,塑性区向内发展。对于理想塑性材料,在塑性区内| kg2 |= 400-1 为一常数。另外,从边界条件的要求可知,边界上 0。塑性区内的kg2 kg2函数可用边界上的等梯度斜面表示。取柱体的一个截面,当整个截面进入塑性屈服阶段时,那些边界上的斜面汇交成一个在此截面上的沙堆形状包络面,沙堆体积的两倍对应于塑性极限扭矩。这种用沙堆体积计算柱体极限扭矩的方法就称为塑性扭转问题中的沙堆比拟法,通过它可以求得较复杂截面柱的极限弯矩和剪应力分布规律。塑性力学的平面问题 这类问题可分为:塑性平面应变问题 金属压力加工中的薄板轧制、拉拔、挤压等问题即属于塑性平面应变问题。这种问题的特点是:应变被限制在一个平面内。这种问题的塑性变形比弹性变形大得多,故可采用刚塑性模型。在土建工程中,边坡稳定问题和长条形地基基础问题等也可作为塑性平面应变问题。塑性平面应变问题有三个方程:两个平衡方程和一个屈服条件方程。如果边界上给定的是应力条件,则可利用三个方程求出应力的分布,而且不需要使用塑性本构关系。在得到问题的解后,应校核刚性区内各点的应力是否满足屈服条件,只有不满足

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。