ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:36.50KB ,
资源ID:3121470      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3121470.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(小学数学教学中如何培养学生的抽象思维能力(马蒙清).doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

小学数学教学中如何培养学生的抽象思维能力(马蒙清).doc

1、1小学数学教学中如何培养学生的抽象思维能力红河州蒙自市新安所镇中心学校 马蒙清2011 年 12 月 20 日2小学数学教学中如何培养学生的抽象思维能力内容提要:数学的抽象决定了数学可以培养学习者的抽象能力,也决定了学习者必须具有一定的抽象能力。从一道道具体的应用题到常见的数量关系,从一道道具体的计算题到计算法则,从具体的数到一个个字母等无一不是抽象的过程。教材的编排体现了这样一个由具体到抽象的过程。新课程标准在“数学思考”方面提出了“经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维”和“丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维”的目标。在新课

2、程教材使用的过程中因为直观操作强调较多,有时则忽视了抽象的过程与结果,对由形象到抽象的过程认识与研究不够,从而实践上很不到位。本文试从小学数学课堂中,谈谈如何培养学生的抽象思维能力,表达自己一些粗浅看法。关键词:小学生; 小学数学; 抽象思维; 培养途径在新课程教材使用的过程中因为直观操作强调较多,有时则忽视了抽象的过程与结果,对由形象到抽象的过程认识与研究不够,从而实践上很不到位。深入课堂还可以发现常态下的数学课堂呈现出这样一种普遍现象:低年级的课堂适当的抽象不够,中、高年级的课堂直观操作不够,抽象太早。我们知道一二年级学生以具体形象思维为主,三、四年级学生的抽象思维能力逐步提高,五、六年级

3、学生的抽象思维能力在继续发展,但学生的思维还是要靠形象来支撑。下面我通过身边的一则教学事例,来诊断和探讨:如何在小学数学中学生抽象思维能力的培养。教学事例:到一年级数学组走走,听老师们说前一天有老师已经教学了两位数加整十数、一位数的计算,上完课的老师反映学生对两类加法容易混淆,学生掌握得不好。于是我便和老师们一起分析:学生头脑中还没有“几个十和几个十相加,几个一和几个一相加”,即“相同计数单位的数相加”的知识,教师在教学时也不能空洞、抽象地告诉学生“几个十要和几个十相加,几个一要和几个一相加”。那怎样变教师的告诉为学生的体悟呢?对策:在主题图教学之后分四步走,帮助学生辨别两类题,休会“相同计数

4、单位的数相加”。第一步:让学生在计数器上拨珠计算,用计数器帮助对比、区分,如 25+20,25+2,44+50,44+5,等等。第二步:只拨第一个加数,想加第二个加数的拨珠动作,再说出得数。第三步:计数器拿走,想象两数相加的拨珠动作,再说出得数。第四步:看算式直接说出得数。其他教师在教学中均采用了这样的四步,先教的那位老师也用这四步进行了补救,效果明显提高,学生基本上没有错误3。新课程教材的使用使得教师们对于问题情境的创设、对于问题解决的方法的多样化非常注重,但是带来的问题是忽视了对学生思维的关注和研究,忽视了学生思维的循序渐进过程,比如形象思维向抽象思维的发展。教学事例中提到的两位数加一位数

5、、整十数的教学中,当先教的那位教师发现学生错误较多时便反复告诉学生要把几个十和几个十相加、几个一和几个一相加,而学生要理解这样一句话本身就有难度。反之,用后面提出的四步进行,第一步让学生在计数器的拨珠计算两种加法,是借助动作进行思维,是最容易、最低级的。第二步只拨一个加数,想加第二个加数的拨珠动作,再说出得数。这两步既有具体的动手操作,又有表象思维的成分,比前者要求略高。第三步计数器拿走,想象两数相加的拨珠动作,再说出得数。想象两数相加的拨珠动作,关键是想若加 4 的话 4 应该加在哪位,若加 40 的话 4 应该加在哪位,有前两步的基础,学生这一步的想象一般不会出错,答案基本正确。第四步看算

6、式直接说出得数。这四步可以是小步子前进,思维由动作到半动作半表象再到表象思维最后到抽象思维,由易到难,循序渐进,拾级而上。在小学阶段有大量的计算教学,如何由算理的直观上升到算法的抽象应该是计算教学中永远要研究的主题。从认识过程来看,学生对问题的思考和解决通常分为两个阶段:感性认识和理性认识阶段。感性认识,即形成感觉、感知和表象的阶段,是对事物的认识的低级阶段。理性阶段,即对表象进行概括和抽象而形成概念的阶段。表象是感知的保存和再现,表象是感性认识和理性认识的中介和桥梁。在案例一和教学事例中我们都用到了表象思维,它促进了形象思维向抽象思维的跨越与提升。数学的抽象决定了数学可以培养学习者的抽象能力

7、,也决定了学习者必须具有一定的抽象能力。从一道道具体的应用题到常见的数量关系,从一道道具体的计算题到计算法则,从具体的数到一个个字母等无一不是抽象的过程。教材的编排出体现了这样一个由具体到抽象的过程。如加法交换律的学习,第一册是借助直观让学生感受 3+2=5、2+3=5,第四册中 这是一种具体形象,第七册则出现一系列算式 38+12=12+38,560+310=310+560,进行初步抽象,并用语言描述:交换两个加数的位置,和不变。在此基础上用字母表示加法交换律 a+b=b+a,进行本质概括。由此可见数学给予人的抽象概括能力,可以使人有条理地在简约状态下进行思考。所以在教学中:1、要重视形象思

8、维。首先在教学中教师要尽可能地运用形象。形象思维能促进学生的心理活动更加丰富,有助于他们更深刻地认识事物的本质和规律。研究表明,富有创造性的学生形象思维一般能达到较高水平。“火车过桥”问4题是学生很难理解的一类行程问题,记得在教学时我信手拈来,很自然恰当地运用了教室里现在的物品进行操作演示:把讲台当做桥,一把米尺当成火车,来演示火车过桥,我先让学生理解“过桥”并进行演示,通过演示明确“车头上桥到车尾离桥”才叫“火车过桥”,接着再弄清火车过桥所行的路程,通过演示学生很容易明白火车过桥所行的路程就是桥长加车身的长度。直观可以让抽象的语言文字变成看得见的形象,可以降低学生思维的难度,可以帮助学生很好

9、地理解知识、建构知识。其次还应指导学生养成用直观化策略解决问题的习惯。如小明和小军去买同一本书,用小明的钱买这本书缺 1.6 元,用小军的钱买这本书缺 1.8 元,如果把两人的钱合并在一起买一本书则多 2 元,这本书单价是多少元?学生如果采用画图策略,那么问题便可迎刃而解。2、要引导学生学会逐步的抽象。首先教师在教学中要注重培养学生的抽象思维能力。抽象只有摆脱具体形象,才能使思维用算法化的方式得出新的结果。如一年级学习“9 加几”的加法,当学生有一圈十、凑十的实物操作基础后,教师必须引导学生回到算式,抽象出算法,要算 9 加几的加法,先要想 9 加几等于 10,再把第二个加数进行分解,最后再进

10、行 9+1+()的计算。其次抽象除了可以使思维概括、简约、深刻以外,还有发现真理的功能。所以教师还要指导学生用抽象的方法解决问题。在学习中可以表现为由原型匹型到抽象提升,如六年级有这样一类题:“一批布,做上衣可做 20 件,做裤子可做 30 条,这批布可做多少套衣服?(一套衣服是一件上衣和一条裤子)”“体育委员为班组购买文体用品。他带的钱正好可以买 15 副羽毛球拍或 24 副乒乓球拍。如果他已经买了 10 副羽毛球拍,那么剩下的钱还可买多少副乒乓球拍?”这些题都可以抽象成工程问题,通过抽象的方式解决问题。3、要重视表象的作用。表象是人脑对当前没有直接作用于感觉器官的、以前感知的事物形象的反映

11、。它不仅具有具体形象性,还具有一定的概括性。它不但反映个别事物的主要特点和轮廓,而且还反映一类事物的共同的表面特征。表象的基础是感知,所以教师要尽可能地丰富学生的感知,要运用观察、操作、实验等多种形式,调动学生的多种感官参与感知。在上述教学事例中,借助表象思维进行 10 以内的加法计算和两位数加整十数、一位数的计算,它的前提是学生必须有丰富的感知,头脑中有相关的图形表象,否则就很难进行。表象思维是感性认识和理性认识的桥梁,教师要重视表象思维在形象思维向抽象思维上升过程中的作用。4、形式运算抽象思维训练的好途径。有这样一道题:“一个正方体削5成一个最大的圆柱,这个圆柱的体积是正方体体积的百分之几

12、?”学生 1 的解法是:假设正方体的棱长为 6 厘米,那么圆柱的底面直径和高都是 6 厘米。(62)26=54(立方厘米),666=216(立方厘米),54216=4=78.5%。学生 2 的解法是:所正方体的棱长看成 a。(a2)2a=a2/4a=a3/4(立方厘米),aaa=a3(立方厘米),a3/4a3=/4=78.5%。两种方法都得到了正解的答案,但是第一种是通过举具体的数据进行运算,第二种则是用字母代替数进行运算,即参数法。显然第二种方法具有更高的抽象水平,也更具有概括性。但是能想到第二种方法的学生只有六七个。运算思维结构可以分为两个水平,一个是具体运算水平,一个是形式运算水平。根据

13、皮亚杰关于思维发展阶段的划分,儿童约从 7 岁到 11 岁为具体运算阶段,这个阶段的运算一般还离不开具体事物的支持。约从 11 岁到 15 岁为形式运算阶段,形式运算就是命题运算思维,这种运算可以离开具体事物,根据假设来进行。小学里已学习了用字母表示数和简单的一元一次方程,六年级学生的运算思维水平可以脱离具体事物与具体数据进行形式的代数的运算,也就是说已经具备了形式运算的基础与可能。而在小学阶段解决数学问题中有时用代数法更具有普遍性、概括性和说服力,同时也为初中学习代数做铺垫打基础,所以作为小学高年级的教师应该把培养学生形成运算的能力作为教学的一个内容。6参考文献:1王文英 注重“过程” 赋以“生命” 小学数学教师2010(4)2张丽琴 课堂教学中学生抽象能力较弱现象的思考 中小学数学2009(8)3明方翎 关注学生需要 营造学习氛围 小学教学设计2008(2)附:马蒙清,1966 年 7 月生,女,云南省红河州蒙自市人,回族,于 1986 年12 月参加工作,大专学历,长期从事小学数学教学与研究,小学高级教师,现于云南省红河州蒙自市新安所镇中心学校任教。电话:13769453837 邮编:661106总字数:3540 个7

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。