ImageVerifierCode 换一换
格式:DOC , 页数:11 ,大小:326KB ,
资源ID:3200729      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3200729.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第十三讲视图与投影、立体图形的展开与折叠.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

第十三讲视图与投影、立体图形的展开与折叠.doc

1、学习方法报社 全新课标理念,优质课程资源第 1 页 共 11 页第十三讲 视图与投影、立体图形的展开与折叠13.1 立体图形的展开与折叠1. 几何体的展开与折叠是_(选填“平面”或“立体” )图形与几何体表面展开图之间相互转化的过程.2. 同一个立体图形按不同的方式展开,可以得到_(选填“相同”或“不同” )的表面展开图,平面图形通过_(选填“展开”或“折叠” )可以得到相应的立体图形.3. 常见几何体的表面展开图:(1)圆柱的侧面展开图是一个_,圆锥的侧面展开图是一个_;(2)正方体有_个面,其表面展开图共由_个正方形组成.考点呈现考点 1 立体图形的表面展开图例1 如图1,是一个正四面体,

2、它的四个面都是正三角形,现沿它的三条棱 AC,BC,CD 剪开展成平面图形,则所得的展开图是( )解析:沿正四面体的三条棱 AC,BC,CD 剪开后,侧面的三个三角形均与后面的面相连.故选 B.点评:本题要充分发挥想象力,同时也可以动手操作加以验证,加深理解. 例 2 下列图形中,不是正方体表面展开图的是( )解析:一个正方体共有六个面,将选项中的平面图形一一验证,就能得出选 D点评:在立体图形的展开图中,应重点掌握正方体的展开图,不仅能将正方体展开为平面图形,而且能识别所给 6 个大小一样的正方形能否拼成正方体.考点 2 判断两个面是否为对面或相邻的面例3 (2012年漳州市)如图2,是一个

3、正方体的表面展开图,则原正方体中“祝”的对面是( )A 考 B 试学习方法报社 全新课标理念,优质课程资源第 2 页 共 11 页C 顺 D 利解析:判断两个面是否为对面的依据是:展开图的对面之间不能有公共边或公共顶点.由图形可以判断“祝”字的对面为“顺”.故选 C.点评:解决这类问题,可以通过动手折叠得出正确答案,也可以直接根据展开图进行分析,找出相对的三组面,进而得到问题的答案.例 4 如图 3,是某一正方体的表面展开图,则该正方体是( )解析:由所给的表面展开图可知, 与 在立体图形中是相对的两个面,故 A,B 两个选项不对,由 可知,选 D. 误区点拨1. 混淆立体图形与平面图形例1

4、下列说法:文具盒是长方形;文具盒是长方体;文具盒的表面是长方形.其中正确的是( )A. B. C. D. 错解:D.剖析:出现错误的原因是对长方体和长方形理解不清,即混淆了立体图形与平面图形,要特别注意的是长方体的一个面是长方形,所以不正确.正解:C.2. 圆柱、圆锥的表面展开图忽略了它们的底面圆例2 画出图4中圆柱和圆锥的表面展开图.错解:如图5.剖析:受圆柱、圆锥侧面展开图的影响,在画它们的表面展开图时,忽略了底面圆而画成侧面展开图.要注意圆柱是由三个面组成的,即两个平面(圆底面)和一个曲面(侧面);圆锥是由两个面组成的,即一个平面(圆底面)和一个曲面(侧面).正解:如图6.学习方法报社

5、全新课标理念,优质课程资源第 3 页 共 11 页技法指导1. 熟练掌握常见立体图形的特征,加强空间想象能力的培养.2. 熟记常见立体图形的展开图,如圆柱、圆锥、正方体等,重点掌握正方体的表面展开图,这也是中考的重点.跟踪训练1.下列图形中,不能经过折叠围成正方体的是( )2. (2012年宁德市)将一张正方形纸片按图、图所示的方式依次对折后,再沿图中的虚线裁剪,最后将图中的纸片打开铺平,所得到的图案是( )3. (2012年南昌市)一个正方体有_个面4. 如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体中和 “着”学习方法报社 全新课标理念,优质课程资源第 4 页 共 11 页

6、相对的面上的汉字是_.5. (2012年杭州市)已知一个底面为菱形的直棱柱,高为10 cm,体积为150 cm 3,则这个棱柱的下底面积为_cm2;若该棱柱侧面展开图的面积为200 cm2,记底面菱形的顶点依次为 A,B,C,D,AE 是 BC 边上的高,则 CE 的长为_cm13.2常见几何体的三视图知识梳理1 几何体的三视图是指_、_、_.2 主视图反映物体的长和_;俯视图反映物体的长和_;左视图反映物体的_因此,在画三视图时,主、俯视图要_对正,主、左视图要_平齐,俯、左视图要_相等3 画三视图时,看得见部分的轮廓线通常画成_,看不见部分的轮廓线通常画成_考点呈现考点1 由小立方块组成的

7、几何体的三视图例1 (2012年广东省)如图1所示几何体的主视图是( )解析:从正面看到的图形叫做主视图.从正面看,此图形的主视图由3列组成,从左到右小正方形的个数依次是1,3,1.故选 B.点评:解决此类问题,首先约定前后称为行,左右称为列,上下称为层,综合判断得出答案.考点2 简单几何体的三视图例2 (2012年安徽省)下面的几何体中,主视图为三角形的是( )解析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.因此,根据这几个常见几何体的三视图,可知圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是两个相连的矩形.故选 C.点评:应熟记一

8、些常见几何体(如圆柱、圆锥、球、三棱柱、三棱锥等)的三视图,解题时可以直接应用.考点3 组合体的三视图学习方法报社 全新课标理念,优质课程资源第 5 页 共 11 页例3 如图2,这个几何体的主视图是( )解析:这个几何体由圆柱和圆锥组合而成,它们的主视图分别为长方形和三角形,且看得见的部分画成实线,故选 A.点评:本题考查简单组合体的三视图,可拆成两个分别研究,要注意看得见的轮廓用实线,看不见的轮廓用虚线,要防止出现选 C 的错误.考点4 旋转体的三视图例4 如图3,直角梯形 ABCD 中,ABDC,A=90将直角梯形 ABCD 绕直线 AD 旋转一周,所得几何体的俯视图是( )解析:由图3

9、旋转所得的几何体是圆台,其上小下大,所以俯视图为 D.点评:要注意上小下大,即上、下底在俯视图中都是看得见的,所以都应画成实线.考点5 已知俯视图及小方块个数画其余视图例5 图4是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )解析:根据图4,可得如图5的实物,由实物知,其主视图应是两列,左列有两层,右列有三层,故选 A.点评:本题已知俯视图及其在每个位置上的小方块数目,由此可以确定实物图,然后再根据实物图确定它的主视图.这体现了视图与实物之间的相互转化.技法指导1. 画物体的三视图时,应注意“主俯长对正,主左高平齐,俯左宽相等”

10、 意思是说,主视图和俯视图的长与几何体的长相等,主视图和左视图的高与几何体的高相等,俯视图和左视图的宽与几何体的宽相等.2 画组合体的三视图时,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线误区点拨学习方法报社 全新课标理念,优质课程资源第 6 页 共 11 页1. 视图的画法有误例1 画出如图6所示正四棱锥的三视图.错解:三视图如图7所示.剖析:画立体图形的三视图时,无论哪种视图都要求视线正对物体,因此,两侧的平面在视图上变成线,所以主视图和左视图错了;对能看见的轮廓线要画成实线,所以俯视图也错了.正解:三视图如图8所示.2. 虚线与实线没有分清例2 如图9是一个空心几何

11、体,请画出它的主视图.错解:主视图如图10所示.剖析:画组合体的三视图时,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.正解:主视图如图11所示.3 画图比例不准确例3 根据所学视图的相关知识,画出图12中正六棱柱的三视图.错解:三视图如图13所示.剖析:画视图要注意长对正,高平齐,宽相等.从图13看,俯视图的尺寸比例画错了,它的长应与主视图一样,而高应等于左视图的长,但图中的俯视图明显不符.正解:三视图如图14.跟踪训练1. 如图所示几何体的主视图是( )学习方法报社 全新课标理念,优质课程资源第 7 页 共 11 页2. 在下面的四个几何体中,它们各自的左视图与主视图

12、不相同的是( )3 如图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是图形中的_ (把你认为正确的序号都填上).4. 如图所示是一个圆锥的主视图,则该圆锥的侧面积是_5. 画出如图所示实物的三视图.13.3投影知识梳理1 太阳光线可以看成_光线(填“相交”或“平行” ) ,像这样的光线所形成的投影称为_2 物体在太阳光照射的不同时刻,不仅影子的长短在变化,而且影子的_也在改变根据不同时刻影长的变换规律,以及太阳东升西落的自然规律,可以判断时间的先后顺序3 判断平行投影的方法:分别过每个物体的顶端及其影子的顶端作一条直线,若两直线_,则为平行投影.4. 灯光的光线可以

13、看成是从一点(即点光源)发出的,像这样的光线所形成的投影称为_5 中心投影点光源的确定:分别过每个物体的顶端及其影子的顶端作直线,这两条直线的_即为光源的位置学习方法报社 全新课标理念,优质课程资源第 8 页 共 11 页6. 判断中心投影的方法:分别过每个物体的顶端及其影子的顶端作直线,若两直线_,则为中心投影考点呈现考点1 投影作图例1 如图1,已知树及其影子,画出在阳光下同一时刻旗杆的影子 解析:在阳光下的投影是平行投影,即光线是平行的,由树高及影长可确定光线的方向,由此即可画出旗杆在同一时刻的影子如图2,连接 AB,过点 C 作 CDAB,则图中ED 即为旗杆在同一时刻的影子.点评:解

14、答此类问题要注意转化,即由影子可确定光线,由光线再确定影子.考点2 与投影有关的计算例2 如图 3,教室窗户的高度 AF 为2.5米,遮阳蓬外端点 D 到窗户上缘的距离为 AD,某一时刻太阳光从教室窗户射入室内,与地面的夹角BPC 为30,PE 的长为 米,试3求 AD 的长度(结果保留根号) 分析:过 E 作 EGAC,构造直角三角形 .在 RtGEP 中可以求出 EG=1,在 RtABD 中可以求出 AD 的长.解:如图3,过点 E 作 EGAC 交 PD 于 G 点,则四边形 BFEG 为平行四边形.由题意,得P = D=30 .因为 EG=EPtan30= =1,所以 BF=EG=1,

15、则 AB=AF-BF=2.5-1=1.5.3在 Rt ABD 中, AD= = (米).所以 AD 的长为 米.0tanAD232点评:解决此类问题的关键是构造直角三角形或者相似三角形,再利用有关的知识来解. 例3 如图 4,王华晚上由路灯 A 下的 B 处走到 C 处时,测得影子 CD 的长为1米,继续往前走3米到达 E 处时,测得影子 EF 的长为2米.已知王华的身高是1.5米,那么路灯 A 到地面的距离 AB 等于( )A 4.5米 B 6米 C 7.2米 D 8米解析:由题意,知 GCBC,ABBC,所以GCAB所以 GCD ABD. 所以 .设 BC=x,则 ABGABx5.1同理,

16、得 所以 .ABx5.12521x所以 x=3.所以 AB=6学习方法报社 全新课标理念,优质课程资源第 9 页 共 11 页故选 B.点评:(1)在解决与投影相关的计算时,常常要用到相似三角形和解直角三角形的知识,要注意知识的融会贯通;(2)在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中间比,它是解题的桥梁,如该题中 AB5.1技法指导1 平行投影的光线是平行的,中心投影的光线是相交的.2 掌握平行投影和中心投影的判定方法.误区点拨1. 未能正确区分平行投影与中心投影例1 如图5,请根据两棵树的影子画出小明在同一时刻的影子.错解:如图6,先根据一棵树的影子作出一条光

17、线,再从小明的头顶作一条与之平行的光线,则图中线段 AB 就是小明的影子.剖析:本题应首先判断两棵树的影子是太阳光下形成的,还是灯光下形成的.而判断的方法是看它们的光线是否相交,如果相交,则为灯光下形成的;如果平行,则为太阳光下形成的.如图7,其实由两棵树的影子作出它们的光线,结果两光线是相交的,所以它们的影子是灯光下形成的,交点即为光源,由此可作出小明在灯光下形成的影子.正解:如图7,线段 CD 就是小明的影子.2 对太阳光下的投影认识不全例2 小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )错解:B 或 D.剖析:没有认清矩形木框处于不同位置时投影的特点,在平行投影下

18、仍然平行或重合,但不可能变为相交.正解:A.跟踪训练1. 下列关于平行投影的说法:平行投影的光线是平行的;平行投影下,同一时刻的学习方法报社 全新课标理念,优质课程资源第 10 页 共 11 页物高和影长成正比;在太阳光下,同一时刻的两物体的影子方向是相反的;在上午时,一个物体的影子是朝东的.其中正确的有( )A 1个 B 2个 C 3个 D 4个2. 在同一时刻的灯光下,小明的影子比小强的影子长,那么( )A 小明比小强高 B 小明比小强矮C 小明和小强一样高 D 无法判断谁的个子高3. 小丽与小明的身高相同,如果在路灯下,发现小丽的影子比小明的影子长,则说明小丽离灯光比较_ (填“远”或“

19、近”).4. 小华在距离路灯6 m 的地方,发现自己在地面上的影长是2 m. 如果小华的身高为1.6 m,那么路灯离地面的高度是 _m. 5. 上小学五年级的小丽看见上初中的哥哥小勇用测树的影长和自己的影长的方法来测树高,她也学着哥哥的样子在同一时刻测得树的影长为5 m,自己的影长为1 m 要求得树高,还应测得_ 6 如图,为了测量学校旗杆的高度,小东用长为3.2 m 的竹竿做测量工具.移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点,此时,竹竿与这一点相距8 m,与旗杆相距22 m,则旗杆的高为_m.7 某数学课外实验小组想利用树影测量树高他们在同一时刻测得一身高为1.5 m 的同学影长为 1.35 m.因为大树靠近一幢建筑物,影子不全落在地面上(如图) ,他们测得地面部分的影长3.6 m,墙上影长 CD=1.8 m,求树高 .

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。