ImageVerifierCode 换一换
格式:PPT , 页数:48 ,大小:8.24MB ,
资源ID:320453      下载积分:100 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-320453.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(铌酸锂晶体中缺陷结构和非挥发全息存储的研究-phy.cuhk.edu.hk.ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

铌酸锂晶体中缺陷结构和非挥发全息存储的研究-phy.cuhk.edu.hk.ppt

1、Tetravalent Ions Doped Lithium Niobate Crystals,Yongfa Kong, Shiguo Liu, Shaolin Chen, and Jingjun Xu,School of Physics and TEDA Applied Physics School,Outline,1. Introduction 2. Optical damage resistance 3. Photorefraction 4. Concluding remarks,The topic of this workshop is on Optics and New materi

2、als.Lithium niobate crystal is dull compared with the vast variability of todays deliberately engineered materials.Is there any news?,1. Introduction,In the field of nonlinear optics there have been many contenders for the title of all-star material of the world. But for day-to-day applications, the

3、 most successful of these nonlinear materials is lithium niobate.,Materials Update: Material of the monthNovember 2002: Lithium niobate,Indeed, because of its availability, widespread use and versatility, it has been dubbed by many as the “silicon of nonlinear optics”.,Silicon of photonics,Lithium n

4、iobate (LiNbO3), also called the silicon of photonics, is indispensable in advanced photonics and nonlinear optics.,M. Ksters1, et al., Nature Photonics 3, 510 (2009),Multi-functions:electro-optic, acousto-optic, elasto-optic, piezoelectric, pyroelectric, ferroelectric, nonlinear optic, etc. Multi-a

5、pplications:Waveguides, modulators, isolators, frequency transformers, optical parametric oscillators, filters, sensors, holographic storage, etc.Property controllability:Good solubility to many dopants, Properties change with different dopants and doping concentrations.,Lithium niobate (LiNbO3, LN)

6、,“Optical silicon”,New materials renew life for integrated optics Lawrence Gasman WDM Solutions, November, 2001 Material systems based on silica on silicon, gallium arsenide, lithium niobate, and indium phosphide are contenders for the role of optical silicon.,Workshop on Optics and New Materials II

7、,The topics include metamaterials, plasmonics, optical lattice, photonic crystals, and novel quantum effects of light-matter interaction.,S. Zhu, et al., Quasi-phase-matched third-harmonic generation in a quasi- periodic optical superlattice. Science 278, 843846 (1997).N. G. R. Broderick, et al., He

8、xagonally poled lithium niobate: a two- dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 43454348 (2000).V. Ilchenko, et al., Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).C. Canalias, et al., V. Mirrorless optical parametric oscill

9、ator. Nature Photon. 1, 459462 (2007).A. Guarino, et al., Electro-optically tunable microring resonators in lithium niobate. Nature Photon. 1, 407410 (2007).R. C. J. Hsu, et al., All-dielectric photonic-assisted radio front-end technology. Nature Photon. 1, 535538 (2007).W. Yang, et al., Non-recipro

10、cal ultrafast laser writing. Nature Photon. 2, 99 104 (2008).,In 1965, Ballman et al. firstly succeeded in growing lithium niobate single crystal: SAW Filter: 45 inch single crystals; Electro-optic modulator: 34 inch single crystals; Photorefraction: Fe, Cu, Mn, or Ce doped crystals; Optical damage

11、resistance : Mg, Zn, In, or Sc doped crystals; Property enhancement : nearly stoichiometric crystals; Optical waveguide: H+, Ti; QPM: PPLN, PPMgLN;.,What have been done on Lithium niobate crystal?,Acoustic grade crystals: inhomogeneous stress, low electricity; Optical grade crystals: graining stripe

12、s; Photorefraction: long response time, low sensitivity; Optical damage resistance: poor optical quality, only in visible range; QPM:PPLN, low optical damage resistance, PPMgLN, hard to fabricate, poor thermal stability; NS crystals: very difficult to grow, very poor optical quality; Defect structur

13、es Energy levels Mechanism.,Good enough?,Optical damage resistance Photorefraction Domain engineering Crystal growth Micro-mechanism of some effects and structural design,What can tetravalent dopants do?,Optical damage,Light-induced optical damage, now also named as photorefraction, was discovered i

14、n LiNbO3 and LiTaO3 crystals.,Photorefraction (PR)Can be used in holographic storage, information processing, light control of light. low response speed, volatility.,Optical damageHinders the applications:frequency doublers, optical parametric oscillators, Q-switches,optical waveguides.,A. Ashkin, e

15、t al., Appl. Phys. Lett. 9, 72(1966),2. Optical damage resistance,A solution: doping,1980, Mg2+ ions, LN:Mg; “Star of China”,G. Zhong et al., J. Opt. Soc. Am. 70, 631 (1980). T. R. Volk et al., Opt. Lett. 15, 996 (1990). J. K. Yamamoto et al., Appl. Phys. Lett. 61, 2156 (1992). Y. Kong et al., Appl.

16、 Phys. Lett. 63, 280 (1995).,It promotes the practical applications of LN in nonlinear optics at high light intensities.,1990, Zn2+ ions, LN:Zn;1992, Sc3+ ions, LN:Sc;1995, In3+ ions, LN:In.,The problems of doped LN,It is difficult to grow high optical quality crystals. Large amounts of doping conce

17、ntrations; (such as usually 5 mol% Mg for CLN)Distribution coefficient far from 1.0; (such as 1.2 for Mg),Some properties are still not satisfied:Resistance not high enough,Enhanced ultraviolet photorefraction (UVPR).,HfO2 doped LiNbO3 (LN:Hf),E.P. Kokanyan et al., J. Appl. Phys. 92 1544 (2002); App

18、l. Phys. Lett. 48, 1980 (2004).,Optical damage resistance of LN:Hf,LN:Hf4 is able to withstand a light density of 5105 W/cm2 without noticeable beam smearing, which is comparable to that observed in 6.5mol% MgO doped LN (LN:Mg6.5) crystal.,(a) 2 mol% Hf;(b) 4 mol% Hf;(c) 6 mol% Hf;(d) 6.5 mol% MgThe

19、 light intensity for (a) is 104 W/cm2 and 5105 W/cm2 for (b), (c), and (d).,S. Li et al., J. Phys.: Condens. Matter. 18, 3527 (2006).,As the doping concentration reaches 2.0 mol% ZrO2, LN:Zr crystals can withstand a light intensity as high as 2.0107 W/cm2.At the same experimental conditions, the lig

20、ht intensity that 6.5 mol% Mg doped LN (LN:Mg6.5) can withstand is about 5.0105 W/cm2.,(a), (b) and (c) LN:Zr1.7; (d) LN: Zr2. The light intensity for (a) is 1.3103 W/cm2, (b) 1.3104 W/cm2, (c) and (d) 2.0107 W/cm2.,(a),(c),(b),(d),Y. Kong et al., Appl. Phys. Lett. 91, 081908 (2007).,ZrO2 doped LiNb

21、O3 (LN:Zr),Light-induced changes of refractive indices,As the doping concentration of Zr above 2.0 mol%, the refractive index changes of LN:Zr crystals are one order of magnitude smaller than that of LN:Hf and LN:Mg.,Light-induced change of the refractive index in saturation as a function of dopants

22、,The distribution coefficient of Zr,The maximum value is 1.04 and the minimum value is 0.97. Therefore, the distribution coefficient of Zr is much closer to one than that of Mg.,SnO2 doped LiNbO3 (LN:Sn),L. Wang et al., Opt. Lett. 35, 883 (2010).,Distortion of transmitted argon laser beam spots afte

23、r 5 min of irradiation. (a)-(d) for Sn1:LN, Sn2:LN, Sn2.5:LN, and Sn5:LN, respectively. The light intensities are (a) 2.5102 W/cm2, (b) 4.7103 W/cm2, (c) 4.8105 W/cm2, and (d) 5.4105 W/cm2.,The distribution coefficient of LN:Sn,Dependence of the distribution coefficient of Sn4+ ions in Sn:LN crystal

24、s on the doping levels of SnO2.,Ultraviolet photorefraction (UVPR),Enhancement of UVPR in LN:Mg,J. Xu, et al., Opt. Lett. 25, 129(2000),Pulsed UV image amplification for programmable laser marking,A laser at 355nm, with 5mJ, 10ns pulse duration, a repetition rate of 20Hz.,The UVPR of LN:Zn and LN:In

25、,H. Qiao, et al., Phys. Rev. B 70, 094101(2004).,The resistance of LN:Zr to UVPR,Fig.2 Beam distortion of the transmitted UV light passing through LiNbO3 crystals (wavelength 351 nm, intensity 1.6105 W/cm2). (a) PLN; (b) LN:Zr1; (c) LN:Zr2; (d) LN:Zr5.,Fig.1 The dependence of UV photorefractive diff

26、raction efficiency and saturated refractive index change of LN:Zr on the doping concentration of Zr. The open symbols show the data for LN:Mg5.,F. Liu, et al., Opt. Lett. 35, 10 (2010),The UVPR of LN:Hf,Fig.1 Distortion of transmitted UV beam spots after irradiation of 5 min (wavelength 351nm, inten

27、sity 18.5 kW/cm2); ae correspond to LN doped with 2, 2.5, 3, 4, and 6 mol.% Hf.,W. Yan, et al., Opt. Lett. 35, 601 (2010),*6.5 mol% MgO; *5 mol% MgO in melt.,Comparison of LN:Mg, LN:Hf, LN:Zr and LN:Sn,By now, Fe2O3 doped LiNbO3 (LN:Fe) is one of the most excellent candidate materials for optical da

28、ta storage due to its: high diffraction efficiency, high data storage density, long storage lifetime.,3. Photorefraction,Fe2O3 doped LiNbO3 (LN:Fe),The problems: low response speed, strong light-induced scattering, volatility.,A solution to increase the response speed,Co-doping with damage-resistant

29、 elements such as Mg, Zn, In and Sc, has been found to be a useful way to increase the response speed and resistance to scattering. When the doping concentrations are above the threshold, Fe3+ ions and part of Fe2+ ions on Li sites will be repelled to Nb sites, improves the response speed.apparently

30、 decreases the diffraction efficiency.,G. Zhang, Proc. SPIE 2529, 14 (1995).,HfO2 and Fe2O3 co-doped LiNbO3(LN:Fe,Hf),S. Li, et al., Appl. Phys. Lett. 89, 101126 (2006),ZrO2 and Fe2O3 co-doped LiNbO3(LN:Fe,Zr),Y. Kong et al., Appl. Phys. Lett. 92, 251107 (2008),The OH- absorption spectra of LN:Fe,Zr

31、,3507 cm-1:Fe3+ in Nb-site,LN:Fe:Mg,LN:Fe,Zr: from top to bottom are for 1, 2, 3, 4, and 5 mol% Zr, respectively; 0.03 wt% Fe,The UV-Visible spectra of LN:Fe,Zr and LN:Fe,Hf,Fe2+/3+ ions still remain at Li sites when the doping concentration of ZrO2 or HfO2 goes above its threshold value!,400700 nm:

32、 Fe2+Nb5+ intervalence transfer,LN:Fe, Zr: A, B, C, D, and E are for 1, 2, 3, 4, and 5 mol% Zr, and X and Y are for 2 and 5 mol% Hf, respectively; 0.03% Fe.,Comparison of LN:Fe, LN:Fe,Mg, LN:Fe,Hf and LN:Fe,Zr,S. Li, et al., Appl. Phys. Lett. 89, 101126 (2006)Y. Kong et al., Appl. Phys. Lett. 92, 25

33、1107 (2008),Nonvolatile holographic storage,LiNbO3:Fe,Mn,K. Buse, et al., Nature 393, 665 (1998),one-center two-center,Energy level diagram of LiNbO3,The co-doping of Zr eliminates undesired intrinsic electron traps, which greatly enhances the charge transition speed for nonvolatile holographic stor

34、age,NbLi4+/5+ NbNb4+/5+,NbLi4+/5+,Conduction band,2.8 eV,2.6 eV,2.5 eV,1.6 eV,Mn2+/3+,Fe2+/3+,EFermi,Conduction band,2.8 eV,2.6 eV,Mn2+/3+,Fe2+/3+,EFermi,CLN:Mn,Fe,LN:Zr,Fe,Mn,LiNbO3:Zr,Fe,Mn,Y. Kong et al., Opt. Lett 34, 3896 (2009),Comparison of LN:Zr,Fe,Mn, LN:Mg,Fe,Mn, and LN:In,Fe,Mn,LiNbO3:Zr,

35、Cu,Ce,F. Liu et al., Opt. Express 18, 6333 (2010),The light intensity dependence of the measured light-induced scattering in the samples of triply doped LiNbO3 crystals. The lines are guides to the eyes.,The sensitivity of LiNbO3 co-doped with different ions for nonvolatile holographic storage,The a

36、bove results indicate that tetravalent ions are excellent choice for the control of optical damage or photorefraction of LN. These results also open a door for us to understand the micro-mechanism of optical damage resistance.These results give us suitable choices for crystal design.,The question re

37、mains: Why LN:Zr has such outstanding properties as compared with LN:Hf, LN:Sn, and LN:Mg?,4. Concluding remarks,Silicon single crystal,Fig. 1. Range of electrical resistivities of pure and donor-doped silicon single crystals shown in comparison with metals and insulators.,Fig. 2. Cross-sectional vi

38、ew of the defect-free, near-surface region of a silicon wafer. The lower portion of the figure shows silicon dioxide precipitates used for impurity gettering.,H. Queisser, et al., Science 281, 945 (1998),Optical fiber,In 1966, Prof. Kao and Hockham proposed that when the loss of glass fiber was less

39、 than 20 dB/km it could be used as a conductor for optic communication, however at that time the loss of the best optical glass in the world was as large as 1000 dB/km.,In 1970,Corning Incorporated made optical fibers with loss of 20dB/km.In 1974, the loss of optical fiber reduced to 2 dB/km as the

40、purity of raw materials increased to 8N.In 1976, the loss of optical fiber reduced to 0.5 dB/km as the concentration of OH in raw materials controlled in the order of ppm.In 1980, the transport loss of optical fiber dropped to only 0.2 dB/km, which is closed to the theoretical value of 0.15dB/km.,Ho

41、w about lithium niobate crystals?,Though lithium niobate has been dubbed as “optical silicon” or “photonic silicon”, compared with silicon single crystal and optical fiber, its research is rather preliminary. We do not exactly know:the defect structures, even the intrinsic defects,the function of every dopant,the relationship between defects and optical or photonic properties.We are far from what we expect:The control of defects;The growth of high quality single crystals.,Our dream!,Thank you for your attention!,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。