1、概率的含义目标认知: 重点: 古典概型的理解,列举法(列表、画树状图)求概率,用频率估计概率.难点: 具体问题具体分析后选择方法求出概率.要点评述与题例分析(一)从事件发生的所有可能结果出发,考虑每种可能结果所占的可能性大小的值,然后将事件 A所包含的所有可能结果的各自可能性相加例 1、一个不透明的袋中装有除颜色外其余均相同的 5个红球和 3个黄球,从中随机摸出一个,则摸到黄球的概率是( ) A、 B、 C、 D、解析:选 C.袋中每个球被取出的机会均等,从而从袋中随机摸出一个球的所有可能情况共有种,其中 3种情况是黄球,故摸到黄球的概率是 .错误思考方法:(1)任取出一球无外乎红球或黄球两种
2、可能情况,黄球是其中一种情况,所以选 B;(2)任取出一球无外乎红球或黄球两种可能情况,但其中红球多,故取出红球的可能性比取出黄球的可能性大,所以选 D.评述:显然此处思路中仍有可取的地方,只是在思考取出红球的可能性比取出黄球的可能性大多少时没想清楚到底大多少,此问题恰是此处的难点.例 2、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机的选择一条路径,它获得食物的概率是多少? 解析:蚂蚁可以吃到食物的概率为 ,因首先蚂蚁爬向左、中、右三个大树杈的概率各是 ,爬向左边树杈没有食物,爬向中间或右边树杈时又各有 的概率可以吃到食物,故蚂蚁可以吃到食物的概率为 .也可换一个角度思考,
3、从图左边第一个小树杈顺时针数起,蚂蚁爬到每个树杈的概率依次为:, , , , , , ,可以吃到食物的情况只有两个 的情况.经典错误:很多同学忽视对古典概型的理解,认为蚂蚁总共面对条路的选择,其中有食物的路为条,故蚂蚁可以吃到食物的概率为 .评述:在用穷举法求概率时,一定要关注你所举出的各种情况发生的可能性到底是多少?若有其中的一些情况你不能说清楚其可能性大小,则可以肯定你的思考方法有问题,所有情况没列全或分列的标准不统一,需重新考虑.(二)该试验所有可能发生的结果有 n种,每种结果发生的可能性相等.直接考虑事件 A 包含的可能结果种数为 m,则事件 A发生的概率为: .例 3、(本小题 5分
4、)在一个布口袋中装着只有颜色不同,其它都相同的白、红、黑三种颜色的小球各 1只,甲乙两人进行摸球游戏;甲先从袋中摸出一球看清颜色后放回,再由乙从袋中摸出一球.(1)试用树状图(或列表法)表示摸球游戏所有可能的结果;(2)如果规定:乙摸到与甲相同颜色的球为乙胜,否则为负,试求乙在游戏中能获胜的概率.解:(1)画树形图来找出所有可能情况或用列表法思考所有情况列表如下甲乙白 红 黑白 白 白 红 白 黑 白红 白 红 红 红 黑 红黑 白 黑 红 黑 黑 黑(2)由树形图可得,该试验的所有可能情况有 9种,其中乙摸到与甲相同颜色球有三种情况,每种情况出现的机会均等,乙取胜的概率为例 4、一个袋子中装
5、有红、黄、蓝三个小球,它们除颜色外均相同 (1)如果从中随机摸出一个小球,那么摸到蓝色小球的概率是多少?(2)小王和小李玩摸球游戏,游戏规则如下:先由小王随机摸出一个小球,记下颜色后放回,小李再随机摸出一个小球,记下颜色当 2个小球的颜色相同时,小王赢;当 2个小球的颜色不同时,小李赢请你分析这个游戏规则对双方是否公平?并用列表法或画树状图法加以说明解析:(1)每个小球被摸到的机会均等,故 P(摸到蓝色小球)= (2)列表思考所有可能情况:小李小王红 黄 蓝红 红,红 红,黄 红,蓝黄 黄,红 黄,黄 黄,蓝蓝 蓝,红 蓝,黄 蓝,蓝由上表可知小王和小李先后摸球的所有情况有 9种,每种情况出现
6、的可能性相同,其中小王嬴的情况有 3种,小李嬴的情况有 6种 P(小王赢)= = , P( 小李赢)= = 此游戏规则对双方是不公平的.例 5、如图,两个转盘中指针落在每个数字上的机会相等,现同时转动 A、B 两个转盘,停止后,指针各指向一个数字. 小力和小明利用这个转盘做游戏:若两数之积为非负数则小力胜;否则,小明胜. 你认为这个游戏公平吗?请你利用列举法说明理由. 解:列表考虑所有可能情况:-1 0 2 11 -1 0 2 1-2 2 0 -4 -2-1 1 0 -2 -1由列表可知,由两个转盘各转出一数字作积的所有可能情况有 12种,每种情况出现的可能性相同,其中两个数字之积为非负数有
7、7个,负数有 5个, P(小力获胜)= ,P(小明获胜)= . 这个游戏对双方不公平. 例 6、“石头、剪刀、布”是广为流传的游戏,游戏时比赛各方做“石头”、“剪刀”、“布”中手势的一种,规定“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,同种手势或三种手势循环不分胜负继续比赛,假定甲、乙、丙三人都是等可能的做这三种手势,那么: (1)一次比赛中三人不分胜负的概率是多少?(2)比赛中一人胜,二人负的概率是多少?解析:当一次实验要涉及 3个或 3个以上的因素时,列表就有些不方便了,通常采用树形图.为方便表述,我们可以设:剪刀A,石头B,布C,画出 3人出手势的树形图:由树形图可以看出,所
8、有可能出现的情况共有 27种,(1)其中不分胜负的情况有:AAA,BBB,CCC,ABC,ACB,BAC,BCA,CAB,CBA 共 9种;所以,P(三人不分胜负)= ;(2)一人胜二人负的有:AAB,ABA,ACC,BAA,BBC,BCB,CBB,CAC,CCA,共 9种;所以,P(一人胜二人负)= = .例 7、经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,三辆汽车经过这个十字路口,求下列事件的概率: (1)三辆车全部直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转.解析:用树图表示出三辆车经过路口时所有可能出现的选择:由树形图可以看
9、出,三辆车经过路口时所有可能出现的选择共有 27种,(1)三辆车全部继续直行的结果只有一个,所以,P(三辆车全部继续直行)= ;(2)两辆车向右转,一辆车向左转的结果有 3个,所以,P(两辆车向右转,一辆车向左转)= = ;(3)至少有两辆车向左转的结果有 7个,所以,P(至少有两辆车向左转)= .评述:以上几例给我们提供了:(1)计数一种随机试验所有可能情况的方法:列表法和画树形图法,显然两种方法都很有效地不重不漏地计数出随机试验的所有可能出现结果,其中树形图法要比列表法适用范围稍广一些,比如后两题若用列表法就有些不合适,但树形图若对题目理解不深会有些困难,比如例 7会有些同学将树形图画成:
10、学生错误的树状图(2)概率的古典定义,古典概型的概率计算:计数该试验所有可能发生的结果有 n种,每种结果发生的可能性相等,考虑事件 A 包含的可能结果种数 m,则事件 A发生的概率为: .这里要关注“每种结果发生的可能性相等”,这对我们今后进一步学习概率解决概率问题很重要.(三)用频率估计概率例 8、在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共 20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据: 摸球的次数 100 150 200 500 800 1000摸到白球的次数 58 96 116 295 484
11、 601摸到白球的频率0.58 0.64 0.58 0.59 0.605 0.601(1)请估计:当 很大时,摸到白球的频率将会接近 _;(2)假如你去摸一次,你摸到白球的概率是_,摸到黑球的概率是_;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是: 在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)? 请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.解析:(1)0.6 (2)0.6 , 0.4 ;(3)白球 12,
12、黑球 8;(4)尝试自己设计出一种方案?评述:(1)概率这一概念是建立在频率这一统计量的稳定性基础之上的,相同条件下,一个事件发生的概率是一个常数,是由事件固有的属性决定的,但是如果用实验估算概率的方法,频率会随着样本空间的变化而变化,虽然随着样本的增加,频率会越来越集中于一个常数,这个常数就是概率(统计概率的定义),但从实质上来讲,频率仍是一个随机数,而概率却是一个科学的确定值,所以用频率估计出来的概率有时是不精确的,会有误差.(2)用频率估计概率可以解决一些实际问题,在生产实践上人们经常用蒙特卡罗方法:又称随机抽样或统计试验方法,其基本原理及思想是,当所要求解的问题是某种事件出现的概率,或
13、者是某个随机变量的期望值时,他们可以通过某种试验的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用他们作为问题的解.其思想依据是:理论概率=试验概率.常用方法是:先做记号,再数记号,然后统计频率,分析规律概括得出概率.例 9、为了估计池塘里有多少条鱼,从池塘里捕捞了 1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞 200条,若其中有标记的鱼有 10条,则估计池塘里有鱼_条 解析:设池塘里有鱼 n条,则可解得 n=20000.评述:这是一道统计概率知识的具体应用题,最早出现为七年级活动课,很多同学可能都还有印象,用这一思路我们可以较为准确
14、地估计很多我们想知道的数据,如:混合杂粮中各种粮食的比例,面对一批产品的正品率等.例 10、小明在操场上做游戏,他发现地上有一个不规则的封闭图形 ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为 1米的圆,在不远处向圈内掷石子,且记录如下:50次 150次 300次石子落在O 内(含O 上)的次数 m14 43 93石子落在阴影内的次数 n 19 85 1865.2 概率的含义你能否求出封闭图形 ABC的面积?试试看.解析:随实验次数的增加,可以看出石子落在O 内(含O 上)的频率趋近 0.5,有理由相信O 面积会占封闭图形 ABC面积的一半,所以求出封闭图形 ABC的面积为 2 .
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。