ImageVerifierCode 换一换
你正在下载:

邻域.ppt

[预览]
格式:PPT , 页数:17 ,大小:1.46MB ,
资源ID:347508      下载积分:100 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-347508.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(邻域.ppt)为本站会员(ga****84)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

邻域.ppt

1、微积分乙,成绩:平时成绩(出勤+作业)10%,测验10%,期中考试20%,期末考试60%主讲老师:仲杏慧办公室:玉泉校区欧阳楼204邮箱:助教:张壹邮箱:答疑:每周三下午1:304:30,地点在东1A-123,第一章,分析基础,函数,极限,连续, 研究对象, 研究方法, 研究桥梁,函数与极限,第一章,二、映射,三、函数,一、集合,(板书),第一节,机动 目录 上页 下页 返回 结束,映射与函数,元素 a 属于集合 M , 记作,元素 a 不属于集合 M , 记作,一、 集合,1. 定义及表示法,定义 1.,具有某种特定性质的事物的总体称为集合.,组成集合的事物称为元素.,不含任何元素的集合称为

2、空集 ,记作 .,注: M 为数集,表示 M 中排除 0 的集 ;,表示 M 中排除 0 与负数的集 .,机动 目录 上页 下页 返回 结束,表示法:,(1) 列举法:,按某种方式列出集合中的全体元素 .,例:,有限集合,自然数集,(2) 描述法:,x 所具有的特征,例: 整数集合,或,有理数集,p 与 q 互质,实数集合,x 为有理数或无理数,开区间,闭区间,机动 目录 上页 下页 返回 结束,无限区间,点的 邻域,其中, a 称为邻域中心 , 称为邻域半径 .,半开区间,去心 邻域,左 邻域 :,右 邻域 :,机动 目录 上页 下页 返回 结束,是 B 的子集 , 或称 B 包含 A ,2

3、. 集合之间的关系及运算,定义2 .,则称 A,若,且,则称 A 与 B 相等,例如 ,显然有下列关系 :,若,设有集合,记作,记作,必有,机动 目录 上页 下页 返回 结束,定义 3 . 给定两个集合 A, B,并集,交集,且,差集,且,定义下列运算:,余集,直积,特例:,为平面上的全体点集,机动 目录 上页 下页 返回 结束,或,二、 映射,1. 映射的概念,某校学生的集合,学号的集合,某班学生的集合,某教室座位的集合,机动 目录 上页 下页 返回 结束,引例1.,引例2.,引例3.,(点集),(点集),向 y 轴投影,机动 目录 上页 下页 返回 结束,定义4.,设 X , Y 是两个非

4、空集合,若存在一个对应规,则 f ,使得,有唯一确定的,与之对应 ,则,称 f 为从 X 到 Y 的映射,记作,元素 y 称为元素 x 在映射 f 下的 像 ,记作,元素 x 称为元素 y 在映射 f 下的 原像 .,集合 X 称为映射 f 的定义域 ;,Y 的子集,称为 f 的 值域 .,注意:,1) 映射的三要素 定义域 , 对应规则 , 值域 .,2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一 .,机动 目录 上页 下页 返回 结束,对映射,若, 则称 f 为满射;,若,有,则称 f 为单射;,若 f 既是满射又是单射,则称 f 为双射 或一一映射.,引例2, 3,机动

5、目录 上页 下页 返回 结束,引例2,引例2,例1.,海伦公式,例2.,如图所示,对应阴影部分的面积,则在数集,自身之间定义了一种映射,(满射),例3.,如图所示,则有,(满射),(满射),机动 目录 上页 下页 返回 结束,X (数集 或点集 ),说明:,在不同数学分支中有不同的惯用,X ( ),Y (数集),机动 目录 上页 下页 返回 结束,f 称为X 上的泛函,X ( ),X,f 称为X 上的变换,R,f 称为定义在 X 上的为函数,映射又称为算子.,名称. 例如,2. 逆映射与复合映射,(1) 逆映射的定义,定义:,若映射,为单射,则存在一新映射,使,习惯上 ,的逆映射记成,例如, 映射,其逆映射为,其中,称此映射,为 f 的逆映射 .,机动 目录 上页 下页 返回 结束,(2) 复合映射,机动 目录 上页 下页 返回 结束,手电筒,D,引例.,复合映射,定义.,则当,由上述映射链可定义由 D 到 Y 的复,设有映射链,记作,合映射 ,时,或,机动 目录 上页 下页 返回 结束,注意: 构成复合映射的条件,不可少.,以上定义也可推广到多个映射的情形.,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。