ImageVerifierCode 换一换
格式:DOC , 页数:8 ,大小:149.50KB ,
资源ID:3519914      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3519914.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(EMC-PCBdesign.doc)为本站会员(sk****8)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

EMC-PCBdesign.doc

1、印制电路板(PCB)的电磁兼容设计 第 1 页 共 8 页线路板(PCB)级的电磁兼容设计1引言印制线路板(PCB)是电子产品中电路元件和器件的支撑件,它提供 电路元件和器件之间的电气连接,它是各种电子设备最基本的组成部分,它的性能直接关系到 电子设备质量的好坏。随着信息化社会的 发展,各种电子产品经常在一起工作,它 们之间的干扰越来越严重,所以,电磁兼容问题也就成为一个电子系统能否正常工作的关键。同样,随着电于技术的发展,PCB 的密度越来越高,PCB 设计的好坏对电路的干扰及抗干扰能力影响很大。要使电子电路 获得最佳性能,除了元器件的选择和电路设计之外,良好的 PCB 布线在电磁兼容性中也

2、是一个非常重要的因素。既然 PCB 是系统的固有成分,在 PCB 布线中增强电磁兼容性不会 给产品的最终完成带来附加费用。但是,在印制线路板设计中,产品设计师 往往只注重提高密度,减小占用空间,制作简单,或追求美观,布局均匀,忽视了线路布局对电磁兼容性的影响,使大量的信号辐射到空 间形成骚扰。一个拙劣的 PCB 布线能导致更多的电磁兼容问题,而不是消除 这些问题。在很多例子中,就算加上滤波器和元器件也不能解决这些问题。到最后,不得不对整个板子重新布 线。因此,在开始时养成良好的 PCB 布线习惯是最省钱的办法。有一点需要注意,PCB 布线没有 严格的规定,也没有能覆盖所有 PCB 布线的专门的

3、规则。大多数 PCB 布线受限于线路板的大小和覆铜板的层数。一些布 线技术可以 应用于一种电路,却不能用于另外一种,这便主要依赖于布线工程师的经验。然而 还是有一些普遍的规则 存在,下面将 对其进行探讨。为了设计质量好、造价低的 PCB,应遵循以下一般原则:2PCB 上元器件布局首先,要考虑 PCB 尺寸大小。PCB 尺寸 过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定 PCB尺寸后再确定特殊元件的位置。最后,根据电路的功能单元,对电路的全部元器件进行布局。电子设备中数字电路、模拟电 路以及电源电路的元件布局和布 线其特点各不相同,它 们

4、产生的干扰以及抑制干扰的方法不相同。此外高 频、低 频电路由于频率不同,其干扰以及抑制干扰的方法也不相同。所以在元件布局时,应该将数字电路、模拟电路以及电源电路分别放置,将高频电路与低频电路分开。有条件的应使之各自隔离或单独做成一块电路板。此外,布局中还应特别注意强、弱信号的器件分布及信号传输方向途径等问题。在印制板布置高速、中速和低速逻辑电路时, 应按照图 1 的方式排列元器件。在元器件布置方面与其它逻辑电路一样,应把相互有关的器件尽量放得靠近些,这样可以获得较好的抗噪声效果。元件在印刷线路板上排列的位置要充分考 虑抗 电磁干扰问题。原 则之一是各部件之间的引线要尽量短。在布局上,要把模拟信

5、号部分,高速数字电路部分,噪声源部分(如继电器,大 电流开关等)这三部分合理地分开,使相互间的信号耦合 为最小。如 图 1所示。时钟发生器、晶振和 CPU 的时钟输入端都易产生噪声,要相互靠近些。易产生噪声的器件、小电流电路、大电流电路等应尽量远离逻辑电路。如有可能,应另做电路板,这一点十分重要。2.1 在确定特殊元件的位置时 要遵守以下原则:(1) 尽可能缩短高 频元器件之间的连线,设法减少它们的分布参数和相互 间的电磁干扰。易受干 扰的元器件不能相互挨得太近,输入和 输出元件应尽量远离。(2) 某些元器件或 导线之间可能有较高的电位差, 应加大它 们之间的距离,以免放 电引出意外短路。带高

6、电压的元器件应尽量布置在调试时手不易触及的地方。(3) 重量超过 15g 的元器件、应当用支架加以固定,然后 焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题 。热敏元件应远离发热元件。(4) 对于电位器、可调电感线圈、可 变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上方便于 调节的地方;若是机外调节 ,其位置要与 调节旋钮在机箱面板上的位置相适应。(5) 应留出印制板定位孔及固定支架所占用的位置。图 1:印制板元器件布置图印制电路板(PCB)的电磁兼容设计 第 2 页 共 8 页2.2 根据电路的功能单元

7、对电 路的全部元器件进行布局时,要符合以下原则:(1) 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。(2) 以每个功能 电路的核心元件为中心, 围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在 PCB 上,尽量减少和缩短各元器件之间的引线和连接。(3) 在高频下工作的 电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。(4) 位于电路板 边缘的元器件,离电路板边缘一般不小于 2mm。电路板的最佳形状为矩形。长宽比为 3:2或 4:3。电路板面尺寸大于 200x150mm 时应考虑电路

8、板所受的机械强度。2.3 PCB 元器件通用布局要求:电路元件和信号通路的布局必须最大限度地减少无用信号的相互耦合:(1) 低电子信号通道不能靠近高电平信号通道和无滤波的电源线,包括能产生瞬态过程的电路。(2) 将 低 电 平 的 模 拟 电 路 和 数 字 电 路 分 开 ,避 免 模 拟 电 路 、数 字 电 路 和 电 源 公 共 回 线 产 生 公 共 阻 抗 耦 合 。(3) 高、中、低速逻辑电路在 PCB 上要用不同区域。(4) 安排电路时 要使得信号线长度最小。(5) 保证相邻板之 间、同一板相邻层面之间、同一 层面相邻 布线之间不能有过长的平行信号线。(6) 电磁干扰(EMI)

9、滤波器要尽可能靠近 EMI 源,并放在同一块线路板上。(7) DC/DC 变换器、开关元件和整流器应尽可能靠近变压器放置,以使其导线长度最小。(8) 尽可能靠近整流二极管放置调压元件和滤波电容器。(9) 印制板按频 率和电流开关特性分区,噪声元件与非噪声元件要距离再 远一些。(10) 对噪声敏感的布线不要与大 电流,高速开关 线平行。3PCB 布线3.1 印刷线路板与元器件的高 频特性:一个 PCB 的构成是在垂直叠层上使用了一系列的层压、走线和预浸处理的多层结构。在多 层 PCB 中,设计者为了方便调试,会把信号 线布在最外层。PCB 上的布 线是有阻抗、 电容和 电感特性的。阻抗:布线的阻

10、抗是由铜和横切面面积的重量决定的。例如,1 盎司铜则有 0.49m单位面积的阻抗。电容:布线的电容是由绝缘体(EoEr)电流到达的范围(A )以及走 线间距(h)决定的。用等式表达为 CEoErA/h,Eo 是自由空间的介电常数(8.854pF/m ),Er 是 PCB 基体的相关介电常数(在FR4 碾压板中该值为 4.7)电感:布线的电感平均分布在布线中,大 约为 1nH/mm。对于 1 盎司铜线来说,在 0.25mm(10mil)厚的 FR4 碾压板上,位于地线层上方的 0.5mm(20mil)宽、20mm(800mil)长 的线能产生 9.8m 的阻抗, 20nH 的电感以及与地之间 1

11、.66pF 的耦合电容。在高频情况下,印刷线路板上的走 线、 过孔、电阻、电容、接插件的分布电感与电容等不可忽略。 电容的分布电感不可忽略,电感的分布 电容不可忽略。 电阻会产生 对高频信号的反射和吸收。走线的分布电容也会起作用。当走线长度大于噪声 频率相应波长的 1/20 时,就产生天线效应,噪声通过走线向外发射。印刷线路板的过孔大约引起 0.5pF 的电容。一个集成 电路本身的封装材料引入 26pF 电容。一个 线路板上的接插件,有 520nH 的分布电感。一个双列直插的 24 引脚集成电路插座,引入 418nH 的分布电感。这些小的分布参数对于运行在较低频率下的微控制器系统是可以忽略不计

12、的;而对于高速系统必须予以特别注意。下面便是避免 PCB 布线分布参数影响而应该遵循的一般要求:(1) 增大走线的 间距以减少电容耦合的串扰;(2) 平行地布电 源线和地线以使 PCB 电容达到最佳;(3) 将敏感的高 频线布在远离高噪声电源线的地方以减少相互之间的耦合;(4) 加宽电源线 和地线以减少电源线和地线的阻抗。3.2 分割:分割是指用物理上的分割来减少不同类型线之间的耦合,尤其是通过电源线和地线的耦合。图 2 给出了用分割技术将 4 个不同类型的电路分割开的例子。在地线面,非金属的沟用来隔离四个地线面。L 和 C 作为 板子上的每一部分的过滤器,减少不同电路电源面间的耦合。高速数字

13、电路由于其更高的瞬时功率需求而要求放在靠近电源入口处。接口 电路可能会需要抗静 电放电(ESD)和暂态抑制的器件或电路来提高其电磁抗扰性,应独立分割区域。对于 L 和 C 来说,最好不同分割区域使用各自的 L 和 C,而不是用一个印制电路板(PCB)的电磁兼容设计 第 3 页 共 8 页大的 L 和 C,因为这样它便可以为不同的电路提供不同的滤波特性。3.3 基准面的射频电流抑制:不管是对多层PCB 的基准接地层还是单层 PCB 的地线, 电流的路径总是从负载回到电源。返回通路的阻抗越低,PCB 的电 磁兼容性能越好。由于流动在负载和电源之间的射 频电流的影响, 长的返回通路将在彼此之间产生射

14、频耦合,因此返回通路应当尽可能的短,环路区域应当尽可能的小。3.4 布线分离:布线分离的作用是将 PCB 同一层内相邻线路之间的串扰和噪声耦合最小化。所有的信号(时钟,视频,音频,复位等等)在线与线、 边沿到边沿间应在空间上远离。为了进一步的减小电磁耦合,将基准地布放在关 键信号附近或之间以隔离其他信号 线上产生的或信号线相互之间产生的耦合噪声。3.5 电源线设计:根据印制线路板电流的大小,尽量加粗 电源线宽度,减少 环 路电阻。同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增 强抗噪声能力。3.6 抑制反射干扰与终端匹配 :为了抑制出现在印制线终端的反射干扰,除了特殊需要之外,应

15、尽可能缩短印制线的长度和采用慢速电路。必要时可加终端匹配。终端匹配方法比较多,常见终端匹配方法见图 3 所示。根据经验,对一般速度较快的 TTL 电 路,其印制线条长于 10cm 以上时就应采用终端匹配措施。匹配电阻的阻值应根据集成电路的输出驱动电流及吸收电流的最大值来决定。 时钟信号较多采用串 联匹配, 见图 4 所示。3.7 保护与分流线路:在时钟电路中,局部去耦电容 对于减少沿着电源干线的噪声 传播有着非常重要的作用。但是 时钟线同样需要保护以免受其他电磁干扰源的干扰,否 则,受 扰时钟信号将在 电路的其他地方引起问题。设置分流和保护线路是对关键信号(比如:对在一个充满噪声的环境中的系统

16、时钟信号)进行隔离和保护的非常有效的方法。PCB 内的分流或者保 护线路是沿着关 键信号的线路两边布放隔离保护线。保 护线路不仅隔离了由其他信号线上产生的耦合磁通,而且也将关 键信号从与其他信号 线的耦合中隔离开来。分流线路和保护线路之间的不同之处在于分流线路不必两端端接(与地连接),但是保护线路的两端都必须连接到地。为了进一步的减少耦合,多层 PCB 中的保护线 路可以每隔一段就加上到地的通路。图 2:PCB 地线分割图 4:时钟信号的匹配图 3:常用终端匹配方法印制电路板(PCB)的电磁兼容设计 第 4 页 共 8 页3.8 局部电源和 IC 间的去耦:在直流电源回路中,负载的变 化会引起

17、电源噪声。例如在数字电路中,当电路从一个状态转换为另一种状态时,就会在电源线上产生一个很大的尖峰 电流,形成瞬变的噪声电压。局部去耦能够减少沿着电源干线的噪声传播。连接着电源输入口与 PCB 之间的大容量旁路 电容起着一个低频骚扰滤波器的作用,同 时作为一个电能贮存器以满足突发的功率需求。此外,在每个 IC 的 电源和地之间都应当有去耦电容,这些去耦电容应该尽可能的接近 IC 引脚,这将有助于滤除 IC 的开关噪声。配置去耦电容可以抑制因负载变化而产生的噪声,是印制线路板的可靠性设计的一种常规做法,配置原则如下:(1) 电源输入端跨接 10100F 的电解电容器。如有可能,接 100F 以上的

18、更好。(2) 原则上每个集成 电路芯片都应布置一个 0.01F 的瓷片 电容,如遇印制板空隙不 够,可每 48 个芯片布置一个 110F 的钽电容。这 种器件的高频阻抗特别小,在 500kHz20MHz 范围内阻抗小于 1,而且漏电流很小(0.5A 以下)。最好不用电 解电容,电解电容是两层溥膜卷起来的,这种结构在高频时表现为电感。(3) 对于抗噪能力弱、关断时电源变化大的器件,如 RAM、ROM 存储器件,应在芯片的电源线和地线之间直接接入高频退耦电容。(4) 电容引线不能太 长,尤其是高频旁路电容不能有引线。去耦电容值的选取并不严格,可按 C=1/f 计算:即 10MHz 取 0.1F。对

19、微控制器构成的系统,取 0.10.01F之间都可以。好的高频去耦电 容可以去除高到 1GHz 的高频成份。陶瓷片电容或多层陶瓷电容的高频特性较好。此外,还应注意以下两点:(1) 在印制板中有接触器、继电器、按 钮等元件时操作它们时均会产生较大火花放电,必须采用 RC 吸收电路来吸收放电电流。一般 R 取 12k,C 取 2.24.7F。(2) CMOS 的输入阻抗很高,且易受感应,因此在使用 时对不用端要通 过电阻接地或接正电源。3.9 布线技术:3.9.1 过孔过孔一般被使用在多层印制线路板中。当是高速信号 时, 过 孔产生 1 到 4nH的电感和 0.3 到 0.5pF 的电容。因此,当铺

20、设高速信号通道时, 过孔应该被保持绝对的最少。对于高速的并行线 (如地址和数据线),如果 层的改 变是不可避免,应该确保每根信号线的过孔数一样。3.9.2 45 度角的路径与过孔相似,直角的转弯路径 应该被避免,因 为它在内部的 边缘能产生集中的电场。该场能耦合 较强噪声到相邻路径,因此,当转动路径时全部的直角路径应该采用 45 度。 图 5 是 45 度路径的一般规则。3.9.3 短截线如图 6 所示短截线会产生反射,同时也潜在增加辐射天线的可能。虽然短截线长度可能不是任何系 统已知信号波长的四分之一整数,但是附带的辐射可能在短截 线上产生振荡。因此,避免在传送高频率和敏感的信号路径上使用短

21、截线。3.9.4 树型信号线排列虽然树型排列适用于多个 PCB 印制线路板的地线连接,但它带有能产生多个短截线的信号路径。因此,应该避免用树型排列高速和敏感的信号线。3.9.5 辐射型信号线排列辐射型信号排列通常有最短的路径,以及产生从源点到接收器的最小延 迟,但是 这也能产生多个反射和辐射干扰,所以应该避免用辐 射型排列高速和敏感信号线 。3.9.6 不变的路径宽度信号路径的宽度从驱动到负载应该是常数。改 变路径宽度 时路径阻抗(电阻, 电感,和电容)会产生改变,从而产生反射和造成线路阻抗不平衡。所以最好保持路径 宽度不变。3.9.7 洞和过孔密集经过电源和地层的过孔的密集会在接近过孔的地方

22、产生局部化的阻抗差异。这个区域不仅成为信号活动图 5:拐角设计图 6:短截线印制电路板(PCB)的电磁兼容设计 第 5 页 共 8 页的“热点”,而且供电面在这点是高阻,影响射 频电流传递。3.9.8 切分孔隙与洞和过孔密集相同,电源层 或地线层切分孔隙(即长洞或 宽通道)会在电源层和地层范围内产生不一致的区域,就象绝缘层一样减少他 们的效力,也局部性地增加了电源层和地层的阻抗。3.9.9 接地金属化填充区所有的金属化填充区应该被连接到地,否 则, 这些大的金属区域能充当 辐射天线。3.9.10 最小化环面积保持信号路径和它的地返回线紧靠在一起将有助于最小化地环,因而,也避免了潜在的天线环。对

23、于高速单端信号,有时如果信号路径没有沿着低阻的地 层走,地线回路可能也必须沿着信号路径流动来布置。3.10 其它布 线 策略:采用平行走线可以减少导线电感,但 导线之间的互感和分布 电容会增加,如果布局允 许,电源线和地线最好采用井字形网状布线结构,具体做法是印制板的一面横向布 线,另一面 纵向布线,然后在交叉孔处用金属化孔相连。为了抑制印制板导线之间的串扰,在 设计布线时应尽量避免 长距离的平行走线,尽可能拉开 线与线之间的距离,信号线与地线及电源 线尽可能不交叉。在一些 对干 扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。3.10.1 为了避免高频信号通过印制导线时产生的

24、电磁辐射,在印制线路板布线时,需注意以下几点:(1) 布线尽可能把同一 输出电流而方向相反的信号利用平行布局方式来消除磁场干扰。(2) 尽量减少印制 导线的不连续性,例如 导线宽度不要突变 ,导线的拐角应大于 90 度,禁止环状走线等。(3) 时钟信号引 线最容易产生电磁辐射干扰,走 线时应与地 线回路相靠近。(4) 总线驱动器 应紧挨其欲驱动的总线。对于那些离开印制 线路板的引线, 驱动器应紧紧挨着连接器。(5) 由于瞬变电 流在印制线条上所产生的冲击干扰主要是由印制导线的电感成分造成的,因此应尽量减小印制导线的电感量。印制导线 的电感量与其长度成正比,与其宽度成反比,因而短而精的导线对抑制

25、干扰是有利的。时钟引线、行驱动器或总线驱动器的信号线常常 载有大的瞬变电流,印制导线要尽可能短。对于分立元件电路,印制导线宽度在 1.5mm 左右时,即可完全满足要求;对于集成电路,印制导线宽度可在0.2 1.0mm 之间选择 。(6) 发热元件周 围或大电流通过的引线尽量避免使用大面积铜箔,否则, 长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜 箔时,最好用 栅格状,这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。(7) 焊盘中心孔要比器件引 线直径稍大一些。 焊盘太大易形成虚 焊。 焊盘外径 D 一般不小于(d+1.2) mm,其中 d 为 引线孔径。对高密度的数字电路, 焊

26、盘最小直径可取 (d+1.0)mm。3.10.2 印刷线路板的布线还要注意以下问题:(1) 专用零伏线 ,电源线的走线宽度1mm;(2) 电源线和地 线尽可能靠近,以便使分布线电流达到均衡;(3) 要为模拟电 路专门提供一根零伏线;(4) 为减少线间 串扰,必要时可增加印刷线条间距离;(5) 有意安插一些零伏 线作为线间隔离;(6) 印刷电路的插 头也要多安排一些零伏线作为线间隔离;(7) 特别注意电 流流通中的导线环路尺寸;(8) 如有可能,在控制线(于印刷板上)的入口处加接 R-C 滤波器去耦,以便消除传输中可能出现的干扰因素。3.11 PCB 布线通用 规则:在设计印制线路板时,应注意以

27、下几点:(1) 从减小辐射 骚扰的角度出发,应尽量选用多层板,内 层 分别作电源层、地线层,用以降低供电线路阻抗,抑制公共阻抗噪声,对信号 线形成均匀的接地面,加大信号 线和接地面间的分布电容,抑制其向空间辐射的能力。(2) 电源线、地线、印制板走线对 高频信号应保持低阻抗。在频率很高的情况下,电源线、地线、或印制板走线都会成为接收与发射骚扰的小天线。降低 这种骚扰的方法除了加 滤波电容外,更 值得重视的是减小电源线、地线及其他印制板走线本身的高 频阻抗。因此,各种印制板走线要短而粗,线条要均匀。(3) 电源线、地线及印制导线在印制板上的排列要恰当,尽量做到短而直,以减小信号 线与回线之间所形

28、印制电路板(PCB)的电磁兼容设计 第 6 页 共 8 页成的环路面积。(4) 时钟发生器尽量靠近到用该时钟的器件。(5) 石英晶体振 荡器外壳要接地。(6) 用地线将时钟 区圈起来,时钟线尽量短。(7) 印制板尽量使用 45折线而不用 90折线布线以减小高频信号对外的发射与耦合。(8) 单面板和双面板用 单点接电源和单点接地;电源线、地线尽量粗。(9) I/O 驱动电路尽量靠近印刷板边的接插件, 让其尽快离开印刷板。(10) 关键的线要尽量粗,并在两边加上保护地。高速线要短而直。(11) 元件引脚尽量短,去耦电容引脚尽量短,去耦电容最好使用无引线的贴片电容。(12) 对 A/D 类器件,数字

29、部分与模拟部分地线宁可统一也不要交叉。(13) 时钟、 总线、片选信号要远离 I/O 线和接插件。(14) 模拟电压输入线、参考电压端要尽量远离数字电路信号 线,特别是时钟。(15) 时钟线垂直于 I/O 线比平行 I/O 线干扰小,时钟元件引脚需远离 I/O 电缆。(16) 石英晶体下面以及对噪声敏感的器件下面不要走 线。(17) 弱信号电路,低频电路周围不要形成电流环路。(18) 任何信号都不要形成环路,如不可避免,让环路区尽量小。4PCB 板的地线设计在电子设备中,接地是控制干 扰的重要方法。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。 电子设备中地线结构大致有系 统地、机壳

30、地(屏蔽地)、数字地( 逻辑地)和模拟地等。在 PCB 板的地线设计中,接地技 术既应用于多层 PCB,也应用于单层 PCB。接地技术的目标是最小化接地阻抗,从此减少从电路返回到 电源之间的接地回路的电势 。(1) 正确选择单 点接地与多点接地在低频电路中,信号的工作频 率小于 1MHz,它的布 线和器件 间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而应采用一点接地。当信号工作频率大于 10MHz 时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在 110MHz 时,如果采用一点接地,其地线长度不应超过波长的 1/20,否 则应采用多点接地法。高频电路宜

31、采用多点串联接地,地线应短而粗,高 频元件周围尽量布置栅格状大面积接地铜箔。(2) 将数字电路与模 拟电路分开电路板上既有高速逻辑电路,又有 线性电路, 应使它们尽量分开,而两者的地线不要相混,分别与电源端地线相连。要尽量加大线性电 路的接地面积。(3) 尽量加粗接地 线若接地线很细,接地电位则随 电流的变化而变化,致使 电子 设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线尽量加粗,使它能通 过三倍于印制线路板的允 许电流。如有可能,接地线的宽度应大于3mm。(4) 将接地线构成 闭环路设计只由数字电路组成的印制线路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。其原因在于

32、:印制线路板上有很多集成电路元件,尤其遇有耗电多的元件时,因受接地 线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地结构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。(5) 当采用多层线 路板设计时,可将其中一 层作为“全地平面” ,这样可减少接地阻抗,同时又起到屏蔽作用。我们常常在印制板周边布一圈 宽的地线,也是起着同 样 的作用。(6) 单层 PCB 的接地线在单层(单面)PCB 中,接地线 的宽度应尽可能的宽,且至少应为 1.5mm(60mil)。由于在单层 PCB 上无法实现星形布线,因此跳线和地线宽 度的改变应当保持为最低,否则将引起线路阻抗与电感的变化。

33、(7) 双层 PCB 的接地线在双层(双面)PCB 中,对于数字 电路优先使用地线栅格/点阵布线,这种布线方式可以减少接地阻抗、接地回路和信号环路。像在单层 PCB 中那样,地 线和电源线 的宽度最少应为 1.5mm。另外的一种布局是将接地层放在一边,信号和 电源线放于另一 边。在 这种布置方式中将进一步减少接地回路和阻抗。此时,去耦电容可以放置在距离 IC 供电线和接地 层之间尽可能近的地方。(8) PCB 电容在多层板上,由分离电源面和地面的 绝缘薄层产生了 PCB 电容。在 单层板上,电源线和地线的平行布放也将存在这种电容效应。PCB 电容的一个优点是它具有非常高的 频率响应和均匀的分布

34、在整个面或整条线上的低串连电感,它等效于一个均匀分布在整个板上的去耦 电容。没有任何一个 单独的分立元件具有这个特性。印制电路板(PCB)的电磁兼容设计 第 7 页 共 8 页(9) 高速电路与低速 电路布放高速电路和元件时应使其更接近接地面,而低速 电路和元件 应使其接近电源面。(10) 地的铜填充在某些模拟电路中,没有用到的 电路板区域是由一个大的接地面来覆盖,以此提供屏蔽和增加去耦能力。但是假如这片铜区是悬空的(比如它没有和地连接),那么它可能表现为一个天线,并将 导致电磁兼容问题。(11) 多层 PCB 中的接地面和电源面在多层 PCB 中,推荐把 电源面和接地面尽可能近的放置在相邻的

35、层中,以便在整个板上 产生一个大的PCB 电容。速度最快的关键信号 应当临近接地面的一边,非关键信号则布置靠近电源面。(12) 电源要求当电路需要不止一个电源供给时,采用接地将每个 电源分离开。但是在单层 PCB 中多点接地是不可能的。一种解决方法是把从一个电源中引出的电源线和地线同其他的电源线和地线分隔开,这同样有助于避免电源之间的噪声耦合。5模拟数字混合线路板的设计如何降低数字信号和模拟信号间的相互干扰呢?有两个基本原则:第一个原则是尽可能减小电流环路的面积;第二个原则是系统只采用一个参考面。相反,如果系统存在两个参考面,就可能形成一个偶极天 线(注:小型偶极天线的辐射大小与线的长度、流

36、过的电流大小以及 频率成正比);而如果信号不能通过尽可能小的环路返回,就可能形成一个大的环状天线(注:小型环状天线 的辐射大小与环路面积、流 过环路的电流大小以及频率的平方成正比)。在设计中要尽可能避免 这两种情况。有人建议将混合信号电路板上的数字地和模拟地分割开,这样能实现数字地和模拟地之间的隔离。尽管这种方法可行,但是存在很多潜在的问题,在复 杂的大型系 统中问题尤其突出。最关键的问题是不能跨越分割间隙布线,一旦跨越了分割 间隙布线, 电磁辐射和信号串 扰都会急剧增加。在 PCB 设计中最常见的问题就是信号线跨越分割地或电源而产生 EMI 问题。了解电流回流到地的路径和方式是优化混合信号电

37、路板设计的关键。许多设计工程师仅仅考虑信号电流从哪儿流过,而忽略了电流的具体路径。如果必须对地线层进 行分割,而且必须通过分割之间的间隙布线,可以先在被分割的地之间进行单点连接,形成两个地之 间的 连接桥,然后通 过该连接桥布线。这样,在每一个信号线的下方都能够提供一个直接的电流回流路径,从而使形成的环路面积很小。采用光隔离器件或变压器也能实现信号跨越分割间隙。 对 于前者,跨越分割 间隙的是光信号;在采用变压器的情况下,跨越分割间隙的是磁 场。 还有一种可行的办 法是采用差分信号:信号从一条线流入从另外一条信号线返回,这种情况下,不需要地作为回流路径。在实际工作中一般倾向于使用统一地,将 P

38、CB 分区为模拟 部分和数字部分。模 拟信号在电路板所有层的模拟区内布线,而数字信号在数字 电路区内布线。在 这种情况下,数字信号返回电流不会流入到模拟信号的地。只有将数字信号布线在电 路板的模拟部分之上或者将模 拟信号布线在电路板的数字部分之上时,才会出现数字信号对模拟信号的干扰。出 现这种问题并不是因为 没有分割地,真正原因是数字信号布 线不适当。在将 A/D 转换器的模拟地和数字地管脚连接在一起时,大多数的 A/D 转换器厂商会建议:将 AGND 和DGND 管脚通 过 最短的引线连接到同一个低阻抗的地上。如果系统仅有一个 A/D 转换器,上面的 问题就很容易解决。将地分割开,在 A/D

39、 转换器下面把模拟地和数字地部分 连接在一起。采取该方法时,必须保证两个地之间的连接桥宽度与 IC 等宽,并且任何信号线都不能跨越分割间隙。如果系统中 A/D 转换器较多,例如 10个 A/D 转换 器怎样连接呢?如果在每一个 A/D 转换器的下面都将模拟地和数字地连接在一起,则产生多点相连,模拟地和数字地之间的隔离就毫无意 义。而如果不 这样连 接,就违反了厂商的要求。最好的办法是开始时就用统一地。将 统一的地分为模拟部分和数字部分。这样的布局布线既满足了 IC 器件厂商对模拟地和数字地管脚低阻抗连接的要求,同 时又不会形成 环路天线或偶极天线而产生 EMC 问题。混合信号 PCB 设计是一

40、个复杂的过程, 设计过程要注意以下几点:(1) PCB 分区为独立的模拟部分和数字部分。(2) 合适的元器件布局。(3) A/D 转换 器跨分区放置。(4) 不要对地进 行分割。在电路板的模拟部分和数字部分下面敷 设统一地。(5) 在电路板的所有 层中,数字信号只能在电路板的数字部分布 线;模拟信号只能在电路板的模拟部分布线。(6) 实现模拟和数字 电源分割。(7) 布线不能跨越分割 电源面之间的间隙。(8) 必须跨越分割 电源之间间隙的信号线要位于紧邻大面积地的布线层上。(9) 分析返回地 电流实际流过的路径和方式。(10) 采用正确的布线规则。印制电路板(PCB)的电磁兼容设计 第 8 页

41、 共 8 页6PCB 设计时的电路措施我们在设计电子线路时,比较 多考虑的是产品的实际性能,而不会太多考虑产品的电磁兼容特性和电磁骚扰的抑制及电磁抗干扰特性。用 这样的电路原理图进行 PCB 的排板时为达到电磁兼容的目的,必 须采取必要的电路措施,即在其电路原理 图的基础上增加必要的附加 电路,以提高其 产品的电磁兼容性能。实际 PCB设计中可采用以下电路措施:(1) 可用在 PCB 走线上串接一个电阻的办法,降低控制信号线上下沿跳变速率。(2) 尽量为继电 器等提供某种形式的阻尼(高频电容、反向二极管等)。(3) 对进入印制板的信号要加滤波,从高噪声区到低噪声区的信号也要加 滤波,同 时用串

42、终端电阻的办法,减小信号反射。(4) MCU 无用端要通过相应的匹配电阻接电源或接地。或定义成输出端,集成电路上该接电源、地的端都要接,不要悬空。(5) 闲置不用的 门电路输入端不要悬空,而是通 过相应的匹配 电阻接电源或接地。 闲置不用的运放正输入端接地,负输入端接输出端。(6) 为每个集成 电路设一个高频去耦电容。每个 电解电容边 上都要加一个小的高频旁路电容。(7) 用大容量的 钽电容或聚酯电容而不用电解电容作电路板上的充放电储能电容。使用管状电容时,外壳要接地。7结束语印制线路板是电子产品最基本的部件,也是 绝大部分电子元器件的 载体。当一个 产品的印制线路板设计完成后,可以说其核心电

43、路的 骚扰和抗扰特性就基本已经 确定下来了,要想再提高其 电磁兼容特性,就只能通过接口电路的滤波和外壳的屏蔽来“围追堵截”了,这样不但大大增加了产品的后续成本,也增加了产品的复杂程度,降低了产品的可靠性。可以说一个好的印制线路板可以解决大部分的 电磁骚扰问题,只要同时在接口电路排板时增加适当瞬态抑制器件和滤波电路就可以同时解决大部分抗扰度问题。印制线路板的电磁兼容设计是一个技巧性很强的工作,同时,也需要大量的 经验积累。一个电磁兼容设计良好的印制板是一个完美的“工艺品”,是无法抄袭和照搬的。但这并不是说我们的印制线路板就不必考虑产品的电磁兼容性能,只有通 过外围电路和外壳进行补救了。只要我们在 PCB 设计中能遵守本文所罗列的设计规则,也可以解决大部分的 电磁兼容问题,再通 过少量的外 围瞬态抑制器件和滤波电路及适当的外壳屏蔽和正确的接地,就可以完成一个满足电磁兼容要求的产品。若我们注意平时的经验和技术的积累和总结,最终我们也可以成为 PCB“工艺品”设计大师, 设计出自己的 PCB“工艺极品”。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。