1、1求解天体问题的金钥匙韩城市司马迁中学:孙永红邮编 715409一、存在问题。运用万有引力定律、牛顿运动定律、向心力公式等力学规律求解天体(卫星)运动一直是高考命题频率较高的知识点。要重视这类问题分析的基本规律。解决本单元问题的原理及方法比较单一,应该不难掌握,但偏偏有相当多的学生颇感力不从心,原因何在?1、物理规律不到位,公式选择无标准。2、研究对象找不准,已知求解不对应。3、空间技术太陌生,物理情景不熟悉。4、物理过程把不准,物理模型难建立。二、应对策略。1、万有引力提供向心力。设圆周中心的天体(中心天体)的质量为 M,半径为 R;做圆周运动的天体(卫星)的质量为 m,轨道半径为 r,线速
2、度为 v,角速度为 ,周期为 T,万有引力常数为 G。则应有:= 2rMmGv2=m 2r2=m( ) 2rT=mg ( g 表示轨道处的重力加速度) 2mG注意:当万有引力比物体做圆周运动所需的向心力小时,物体将坐离心运动。2、在中心天体表面或附近,万有引力近似等于重力。G =mg0 (g 0 表示天体表面的重力加速度)MR注意:在研究卫星的问题中,若已知中心天体表面的重力加速度 g0时,常运用GMg 0R2作为桥梁,可以把“地上”和“天上”联系起来。由于这种代换的作用巨大,此时通常称为黄金代换式。三、在一些与天体运行有关的估算题中,常存在一些隐含条件,应加以运用。在地球表面物体受到的地球引
3、力近似等于重力。 mgRMG2在地球表面附近的重力加速度 g=9.8ms2。地球自转周期 T=24h地球公转周期 T=365 天。月球绕地球运动的周期约为 30 天。四、应用举例1、天体的运动规律。由 可得: 22rvmMGrGMr 越大,V 越小。rR02由 可得: r 越大, 越小。rmrMG223GM由 可得: r 越大,T 越大。T22由 可得: r 越大,a 向 越小。向ar2 2向E= EK+ EP= mv2+mgh 若高度增大则有其它形式的能转化为卫星的机械能,故 E 增1大。1、设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的:( )A、速度越大 B、角速度越大 C
4、、向心加速度越大 D、周期越长2、三颗人造地球卫星 A、B、C 绕地球作匀速圆周运动,如图所示,已知 mA=mBVB VC 周期关系为 TATB=TC向心力大小关系为 FA=FBFC 半径与周期关系为 = =32RT32A、 B、 C、 D、 3、若已知某行星绕太阳公转的半径为 r,公转的周期为 T,万有引力常量为 G,则由此可求出( )A某行星的质量 B太阳的质量 C某行星的密度 D太阳的密度4、利用下列哪些数据,可以计算出地球的质量( )A、已知卫星绕地球做匀速圆周运动的轨道半径 r 和周期 T.B、已知卫星绕地球做匀速圆周运动的轨道半径 r 和周期 v.C、已地球绕太阳做匀速圆周运动的轨
5、道半径 r 和周期 T.D、已知地球的半径 R 和地面的重力加速度 g.5、2002 年 3 月 25 日,我国成功地发射了“神舟 3 号”载人试验飞船,经过 6 天多的太空运行,试验飞船收舱于 4 月 1 日顺利地返回地面。已知飞船在太空中运行的轨道是个椭圆,地球的球心是椭圆的一个焦点,如图所示,飞船在运行是无动力飞行,只受到地球对它的万有引力作用,在飞船从轨道的 A 点沿箭头方向运行到 B 点的过程中,有以下说法,正确的是:( )飞船的速度逐渐减小。 飞船的速度逐渐增大。飞船的机械能守恒。 飞船的机械能逐渐增大。A、 B、 C、 D、6、天文上曾出现几个行星和太阳在同一直线上的现象,假设地
6、球和火星绕太阳的运动可看做匀速圆周运动,周期分别是 T1 和 T2,它们绕太阳运动的轨道基本在同一水平面内若在某一时刻,地球和火星都在太阳的一侧,且三者在同一直线上,那么再经过多长的时间,将再次出现这种现象?已知地球离太阳较近 R0rABA地球BC3A、 B、 C、 D、12T+12T+21T+12T-7、侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面的高度为 ,h要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?已知地球的半径为 ,地面处的重力加速度为 ,地球自转的周期为 。RgT解:
7、对地面附近的物体: 2GMmR对侦察卫星: 4()()hhT卫 卫星绕地一周,经过处于白昼的赤道上空只能拍摄一次照片,故卫星一天拍摄照片的次数为: TN卫设卫星上的摄像机一次拍摄到的赤道上圆弧的长度为 ,L则有: 2RL 由解得: 234()hTg2、地球同步卫星说明:一般卫星与同步卫星运行轨道的区别:由于卫星作圆周运动的向心力必须由地球给它的万有引力来提供,所以所有的地球卫星包括同步卫星,其轨道圆的圆心都必须在地球的的球心上。同步卫星是跟地球自转同步,故其轨道平面首先必须与地球的赤道圆面相平行。又因做匀速圆周运动的向心力由地球给它的万有引力提供,而万有引力方向通过地心,故轨道平面就应与赤道平
8、面相重合。一般卫星的轨道平面、周期、角速度、线速度、轨道半径都在一定的范围内任取。而同步卫星的周期、角速度、线速度、轨道半径都是确定的。二者的质量(动能、势能、机械能)都不确定。1、同步卫星是指相对地面不动的人造地球卫星(D )A.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同值D.它只能在赤道的正上方,且离地心的距离是一定的。2、可以发射一颗这样的人造地球卫星,使其圆轨道( CD )A.当地球表面上某一纬线(非赤道)是共面的同心圆B.与地球上某一经线决定的圆是共面同
9、心圆C.与地球上赤道线是共面同心圆,且卫星相对地球表面静止D.与地球上的赤道线是共面同心圆,且卫星相对地球表面是运动的注意:人造卫星的轨道平面是不转动的,经线是转动的)3(04 广西高考)某颗地球同步卫星正下方的地球表面上有一观察者,他用天文望远W04镜观察被太阳光照射的此卫星,试问,春分那天(太阳光直射赤道)在日落 12 小时内有多长时间该观察者看不见此卫星?已知地球半径为 R,地球表面处的重力加速度为 g,地球自转周期为 T,不考虑大气对光的折射。解析:设所求的时间为 t,用 m、M 分别表示卫星和地球的质量, r 表示卫星到地心的距离,有:22()mMGr春分时,如图所示,圆 E 表示轨
10、道,S 表示卫星,A 表示观察者,O 表示地心,由图可以看出当卫星 S 绕地心 O 转到图示位置以后(设地球自转是沿图中逆时针方向) ,其正下方的观察者将看不见它,据此再考虑对称性,有 sinrR2tT2MGgR由以上各式解得 1234arcsin()TRtg3、天体的估算1、九大行星绕太阳运行的轨迹可粗略地认为都是圆,各星球半径和轨道半径如下表所示:行星名称 水星 金星 地球 火星 木星 土星 天王星海王星冥王星星球半径106m2.44 6.05 6.37 3.39 69.8 58.2 23.7 22.4 2.50轨道半径1011m0.579 1.08 1.50 2.28 7.78 14.3
11、 28.7 45.0 59.0由此表所列数据可以估算出冥王星的公转周期最接近于(D )A、4 年 B、40 年 C、140 年 D、240 年 由此表所列数据可以估算出太阳的质量最接近于(B )A、5.9810 24 B、2.010 24 C、2.010 30 D、5.9810 30 2、2003 年 10 月 15 日,我国成功发射了第一艘载人宇宙飞船“神舟五号”酒泉卫星发射中心发射成功,飞船进入预定轨道环绕地球飞行 14 圈用时 23h,行程 6.27105km.假设飞船运行的轨道是圆形轨道。已知地球半径 R=6.4103km(引力常量 G 未知)求地球表面的重力加速度?3、火星和地球绕太
12、阳的运动可以近似看作同一平面内同方向的运速运周运动。已知火星的轨道半径 r 火 =1.51011m,地球的轨道半径 r 地 =1.01011m,从如图所示的火星与地球星距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字)阳光OAS火星地球太阳54、超重和失重 人造地球卫星在发射过程中有一段向上加速运动阶段,在返回地球时有一个减速阶段,这两个过程都处于超重状态。人造地球卫星进入轨道作匀速圆周运动时,由于万有引力完全提供向心力,人造卫星及内面的物体都处于完全失重状态.1、在发射和回收人造地球卫星的过程中,超重状态不出现在( C)A、卫星加速度逐渐增大的上升初期。 B、
13、卫星加速度逐渐减小的上升末期。C、卫星加速下降的回收阶段。 D、卫星减速下降的回收阶段。2、人造卫星进入轨道作匀速圆周运动,卫星内的物体以下说法中正确的有( ) 处于完全失重状态,所受重力为零 处于完全失重状态,但仍受重力作用所受的重力就是维持它跟随卫星一起作匀速圆周运动所属的向心力处于平衡状态,即所受外力为零A B C D3、人造地球卫星进入轨道做匀速圆周运动,下面说法中正确的是( )A 卫星内的物体失重,卫星没有失重 . B 卫星内的物体不再有重力作用.C 卫星内物体仍受重力作用. D 卫星内的物体没有重力作用而有向心力作用.4、人造卫星进入轨道作匀速圆周运动,卫星内的物体以下说法中正确的
14、有 ( )处于完全失重状态,所受重力为零 处于完全失重状态,但仍受重力作用。所受的重力就是维持它跟随卫星一起作匀速圆周运动所属的向心力。处于平衡状态,即所受外力为零。A B C D 5、航天飞机中的物体处于失重状态是指这个物体A.不受地球的吸引力 B.地球吸引力和向心力平衡C.对支持它的物体的压力为零 D.以上说法都不对6、宇航员在绕地球做匀速圆周运动的航天飞机中,会处于完全失重状态中,则下述说法中正确的是:( )A.宇航员仍受重力作用 B.宇航员受力平衡 C.重力仍产生加速度D.重力正好为宇航员绕地球作匀速圆周运动提供所需的向心力7、一宇宙飞船在离地面 h 的轨道上做匀速圆周运动,质量为 m
15、 的物块用弹簧秤挂起,相对于飞船静止,则此物块所受的合外力的大小为 .(已知地球半径为 R,地面的重力加速度为 g) 6、一地球卫星高度等于地球半径,用弹簧秤将一物体悬挂在卫星内,物体在地球表面受到的重力为 98N,则此时弹簧秤的读数为 _N,物体受到的地球引力 _N.5、卫星的发射与回收1、某人造地球卫星沿圆周运动,由于空气阻力,有关卫星的一些物理量将变化,以下判断正确的是:( D )A、向心加速度变小 B、线速度变小 C、角速度不变。D、运行周期变小 E、机械能变大。说明:卫星的机械能若在向其它形式的能转化,则高度将会减小;而若有其它形式的能转化为卫星的机械能,则其高度将会增大。62、发射
16、通讯卫星的常用方法是:先用火箭将卫星送入一级近地轨道运行,然后再适时开动运载火箭,经过过渡轨道将其送入与地球自转同步的运动轨道,则变轨后与变轨前( )A、机械能增大,动能减小 B、机械能减小,动能增大C、机械能增大,动能增小 D、机械能减小,动能减小3、进入地球轨道的末级火箭和卫星,由于火箭的燃料已经用完,将用于连接火箭和卫星的爆炸螺栓炸开,将卫星和末级火箭外壳分开,火箭外壳被抛开,此后(B )A、卫星将进入较低的轨道环绕地球旋转。 B、卫星将进入较高的轨道环绕地球旋转。C、卫星和火箭均在原轨道上,卫星在前火箭在后。D、以上均有可能。4、宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站( )
17、A只能从较低轨道上加速。 B只能从较高轨道上加速C只能从空间站同一高度轨道上加速 D无论从什么轨道上加速都可以5、发射地球同步卫星时,先将卫星发射至近地圆轨道 1,然后经点火,使其沿椭圆轨道 2 运行,最后再次点火,将卫星送入同步圆轨道 3。轨道 1、2 切于 Q 点,轨道 2、3 相切于 P 点,如图 2 所示,则当卫星分别在 1、2、3 轨道上正常运行时,以下说法正确的是:( ) A.卫星在轨道 3 上的速率大于在轨道 1 上的速率B.卫星在轨道 3 上的角速度小于在轨道 1 上的角速度C.卫星在轨道 1 上经过 Q 点时的加速度大于它在轨道 2 上经过 Q 点时的加速度D.卫星在轨道 2
18、 上经过 P 点时的加速度等于它在轨道 3 上经过 P 点的加速度6、宇航员在某一行星上以速度 v0 竖直上抛一个物体,经 t 秒后落回手中。已知该行星的半径为 R。若在该星球上离地高 h 处,以初速度 v0 平抛一物体,水平射程为多少?要使物体沿水平方向抛出而不落回星球表面,沿星球表面的抛出速度至少应为多大? 解析:当平抛物体的初速度不太大时,在平抛物体运动的范围内,地面可看作是水平的,重力加速度的大小不变、方向始终垂直于水平面。如果平抛物体的初速度很大,其射程就会很远,重力加速度的大小和方向就要变化,就不可能作平抛运动。1、设在地面附近的重力加速度为 g,由于物体做竖直上抛运动:-V0=V
19、0-gt 即 g= t2v0若物体作平抛运动有:X=v0t h= gt2 所以 x= 1thv02、要使物体不落回星球表面,就要求万有引力完全提供向心力,而在星球表面附近,重力约等于万有引力。故:mg= 由 得:v= Rvm2 t2R07、宇宙中某星球的半径为地球的 2 倍,星球的质量为地球的 2 倍,若在该星球上发射一颗卫星,使其环绕该星运动。问该卫星在该星附近轨道发射需最小速度是多少?8、某物体在地面上的重力为 160N,现将它放置在卫星中,在卫星以加速度 a= g 随火210R13PQ27箭加速上升的过程中,当物体与卫星中的支持物的相互挤压力为 90N 时,求此时卫星距地球表面有多远?(
20、地球半径 R6.410 3km,取重力加速度 g=10ms2)解析:因为卫星在加速上升的过程中,卫星内的物体与卫星的相互挤压力小与其地面上重力,故应该考虑由于高度的变化而引起的重力加速度的变化。设此时火箭离地球表面的高度为 h,火箭受到的支持力为 N,物体受到的重力为 mg,由牛顿第二定律得:Nmg ma 在 h 高处: mg 2h)(RMmG在地球表面处: mg 2由得:h=R( -1)=1.92104km a-Ng9、2003 年 10 月 15 日,我国成功发射了第一艘载人宇宙飞船“神舟五号” 。火箭全长58.3m、起飞质量为 479.8103,火箭点火升空,飞船进入预定轨道。 “神舟五
21、号”环绕地球飞行 14 圈用的时间是 21h。飞船点火竖直升空时,宇航员杨利伟感觉“超重感比较强” ,仪器显示他对座舱的最大压力等于他体重的 5 倍。飞船进入预定轨道后,杨利伟还多次在舱内飘浮起来。假设飞船运行的轨道是圆形轨道。 (地球半径 R 取 6.4103km,地面的重力加速度 g=10ms2,计算结果取两位有效数字) 。是分析宇航员在舱内“飘浮起来” 的现象产生的原因?(完全失重)求火箭点火发射时,火箭的最大推力?(2.410 7N)估算飞船运行轨道距离地面的高度? (3.210 5m)10、天文工作者观测到某行星的半径为 R,它有一颗卫星,轨道半径为 r,绕行星公转周期为 T。若要在
22、此行星的表面将一颗质量为 m 的卫星发射出去,使其绕该行星运转,求至少应对卫星做多少功?设行星表面无任何气体,不考虑行星的自转。11、天文工作者观测到某行星的半径为 R1,自转周期为 T1,它有一颗卫星,轨道半径为R2,绕行星公转周期为 T2。若要在此行星的表面将一颗质量为 m 的卫星发射出去,使其绕该行星运转,求至少应对卫星做多少功?(设行星表面无任何气体,万有引力恒量为 G)11、设想宇航员完成了对火星表面的科学考察任务后,乘坐返回舱返回围绕火星作匀速运周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时必须具有相同的速度。已知返回舱与人的总质量为 m,火星表面的重力加速度为 g,火星
23、的半径为 R,轨道舱到火星中心的距离为 r,返回舱返回过程中需要克服火星引力做功 W=mgR(1- ) ,不计火星rmgNmgF8表面大气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱?解析:设轨道舱的质量为 m0,速率大小为 v。= 02MGr2vr返回舱与人在火星附近。=mg 2rEK= mv2 1W=mgR(1- ) RrE=EK+W 由得 E=mgR(1- )R2r12、阅读下列信息,并结合该信息解题。开普勒在 19091919 年发表了著名的开普勒行星三定律:第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上
24、。开普勒第一定律又叫轨道定律。第二定律:太阳和行星的连线在相等的时间内扫过的面积相等。开普勒第二定律又叫面积定律。第三定律:所有行星在椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。开普勒第三定律又叫面积定律。实践证明。开普勒三定律也适用于人造地球卫星。如果人造地球卫星(或飞船)沿半径为 r 的圆形轨道绕地球运动,现卫星要返回地面,可在 A 位置开动制动发动机,使卫星速度降低并转移到与地球相切于 B 点的椭圆轨道,从而使飞船沿着以地心为焦点的椭圆轨道运动,如图所示。问在这之后,卫星经过多长时间着陆?(已知地球半径为 R, 地球表面的重力加速度为 g)解析:对近地小圆轨道有 mg = GM
25、m2即 GM=R2g 应用开普勒第三定律 = 32aTe2G4对变速椭圆轨道 a = 2rR对变速椭圆轨道应用式可求 T = g2rR)(显然,着陆时间为 t = 答案:2r)(13、航天飞机是能往返于地球与太空间的载人飞行器。利用航天飞机可将人造卫星送入预定轨道,也可以到太空维修出现故障的地球卫星。rR0RrAB9乘航天飞机对在离地面高 h=800km 的圆形轨道上的人造卫星进行维修时,航天飞机的速度与卫星的速度必须基本相同。已知地球的半径为 R=6400km,地球表面的重力加速度g=9.8ms2,试求维修卫星时航天飞机的速度?航天飞机无动力滑翔着陆,当航天飞机的速度达到 54kmh 时从尾
26、部弹出减速伞,以使减速飞机迅速减速。设航天飞机质量为 100t,弹出减速伞后在水平跑道上滑行的距离不超过 300m,求打开减速伞后航天飞机受到的平均阻力至少为多大?6、宇宙的探索1、中子星是由密集的中子组成的星体,具有极大的密度。通过观察已知的某中子星的自转角速度 ,根据中子星并没有因为自转而解体的事实,人们可以推知中子星的密度。试写出中子星最小密度的表达式?解析:设中子星表面有一个质量为 m 的中子,则它随中子星一起做圆周运动的向心力由它与中子星之间的万有引力提供。由题知:F 引 F 向 即 m 2rMGr2又 = 3R4由式得: 及密度的最小值 = 。G2 G4322、 (03 全国)中子
27、星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,它的自转周期为 T= 。同该中子星的最小密度应是多少才难维持该星体的稳致因自转而s301瓦解。计算时星体可视为均匀球体。 (引力常数 G=6.671011 m3/)解析:物体位于中子星赤道上时,随中子星自转所需的向心力最大,离新趋势最强,最易挣脱引力而是中子星瓦解。只有当赤道上的物体受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。设中子星的密度为 ,质量为 M ,半径为 R,自转角速度为 ,位于赤道处的小块物为 m,则有: RGM22 T 由以上各式得 代入数据解得 .23423GTkg341027.3、假若地球的自
28、转角速度可以增大,为使大量的地表水不致因角速度太大而被甩出,地球自转的周期不得小于多少?(设水只受万有引力。地球平均密度 5.5103kg/m3, 地球的平均半径 R6.4103km,G=6.6710-11Nm2/kg2 。 ) 解析:在学习匀速圆周运动时,当外界提供的向心力 F 与物体作匀速圆周运动所需要的向心力刚好吻合时,物体做稳定的匀速圆周运动。那么地球要保持自身的相对稳定,需要依靠其自转使地球对其任何一部分的作用力恰好提供这一部分做圆周运动的向心力。 设在地球表面上任选一部分质量为 m 的水团,M、R 分别为地球的质量和半径。如图1 所示,之所以该水团未被甩出去,是因为地球对它的万有引
29、力刚好提供它随地球自转的向心力: 10F 向 2RMmGmR2= m( T)2R (1) 由于题目没有告诉地球的质量,所以,需进一步寻找关系: MV34(2) 以上两式联立求解得:T G0.5104s5103s=1.39h。4、根据天文学家观测,月球半径为 R1738km ,月球表面的重力加速度约为地球表面重力加速度的 ,月球表面在阳光的照射下温度可达 127C,此时水蒸气分子的平均速度61达到 V02000ms 。试分析月球表面没水的原因。 (取地球表面的重力加速度 g=9.8ms2)解析:初看题目的已知条件与所问结果找不到直接联系的东西.但想到若月球表面有水,则月球在转动的同时,月球表面的
30、水团也在随月球转动.由圆周运动知识可知:做圆周运动的物体,当外界提供的向心力 F 与物体作圆周运动所需要的向心力刚好吻合时,物体做稳定的匀速圆周运动。若外界提供的向心力 F 小于物体作圆周运动所需要的向心力时,物体将做离心运动而被甩出去.设在地球表面上任选一部分质量为 m 的水团,M、R 分别为地球的质量和半径。如图1 所示,之所以该水团未被甩出去,是因为地球对它的万有引力刚好提供它随地球自转的向心力: 假定月球表面有水,则这些水在 127C 时达到的平均速度 V02000 ms 必须小于月球的第一宇宙速度,否则这些水将不会落回月球表面,导致月球表面无水。取质量为 m 的某水分子。=m (1)
31、2RMmG21v=mg 月 (2) 2g 月 = g (3)61由得:V 1 R月 1700ms V 即以 2000ms 速度运动的水分子已脱离月球表面,也即月球表面无水。5、 (03 江苏高考)据美联社 2002 年 10 月 7 日报道,天文学家在太阳系的 9 大行星之外,又发现了一颗比地球小得多的新行星,而且还测得它绕太阳公转的周期约为 288 年. 若把它和地球绕太阳公转的轨道都看作圆,问它与太阳的距离约是地球与太阳距离的多少倍. (最后结果可用根式表示)解析:设太阳的质量为 M;地球的质量为 绕太阳公转的周期为 T0,太阳的距离为0mR0,公转角速度为 ;新行星的质量为 ,绕太阳公转的周期为 T,与太阳的距离为 R,0公转角速度为 ,根据万有引力定律和牛顿定律,得m0m0
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。