ImageVerifierCode 换一换
格式:DOC , 页数:15 ,大小:220KB ,
资源ID:3543709      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3543709.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(北师大八年级数学上册知识点总结.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

北师大八年级数学上册知识点总结.doc

1、)(无 限 不 循 环 小 数负 有 理 数正 有 理 数无 理 数 )()32,1()(),(30无 限 循 环 小 数有 限 小 数整 数负 分 数正 分 数小 数分 数 负 整 数自 然 数整 数有 理 数 、实 数第一章 勾股定理一、勾股定理直角三角形两直角边 a,b 的平方和等于斜边 c 的平方,即 22cba二、勾股定理的逆定理如果三角形的三边长 a,b,c 有关系 ,那么这个三角形是直角三角形。22cba三、勾股数满足 的三个正整数,称为勾股数。常见的勾股数组有:(3,4,5) ;22cba(5,12,13) ;(8,15,17) ;(7,24,25) ;(20,21,29) ;

2、(9,40,41) ;(这些勾股数组的倍数仍是勾股数)第二章 实数 一、实数的概念及分类 1、实数的分类2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等;32,7(2)有特定意义的数,如圆周率 ,或化简后含有 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001等;(4)某些三角函数值,如 sin60o 等二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b

3、 互为相反数,则有 a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。 (|a|0) 。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可) 。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数 x 的平方

4、等于 a,即 x2=a,那么这个正数 x 就叫做a 的算术平方根。特别地,0 的算术平方根是 0。表示方法:记作“ ”,读作根号 a。a性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a,那么这个数 x 就叫做 a 的平方根(或二次方根) 。表示方法:正数 a 的平方根记做“ ”,读作“正、负根号 a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数 a 的平方根的运算,叫做开平方。0a注意 的双重非负性:03、立方根一般地,如果一个数 x 的立方等于 a,即 x3=a 那么这

5、个数 x 就叫做 a 的立方根(或三次方根) 。表示方法:记作 3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意: ,这说明三次根号内的负号可以移到根号外面。33a四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数, ,0ba(3)求商比较法:设 a、b 是两正实数, ;1;1;1bababa(4)绝对值比较法:设 a、b 是两负实数

6、,则 。(5)平方法:设 a、b 是两负实数,则 。2五、算术平方根有关计算(二次根式)1、含有二次根号“ ”;被开方数 a 必须是非负数。2、性质:(1) )0()(2a)((2) 2)0(a(3) ( ),bab )0,(bab(4) ( ))0,(,3、运算结果若含有“ ”形式,必须满足a(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律 ab加法结合律 )()(cc乘法交换律 乘法结合律

7、 )()(ba乘法对加法的分配律 c第三章 图形的平移与旋转一、平移 1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。二、旋转 1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。第四章 四边形性质探索一、四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形

8、叫做四边形。2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于 360。四边形的外角和定理:四边形的外角和等于 360。推论:多边形的内角和定理:n 边形的内角和等于 180;)2(n多边形的外角和定理:任意多边形的外角和等于 360。6、设多边形的边数为 n,则多边形的对角线共有 条。从 n 边形的一个顶点出3发能引(n-3)条对角线,将 n 边形分成(n-2)个三角形。二、平行四边形 1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补,对角相等(3)平行四

9、边形的对角线互相平分。(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理 1:两组对角分别相等的四边形是平行四边形(3)定理 2:两组对边分别相等的四边形是平行四边形(4)定理 3:对角线互相平分的四边形是平行四边形(5)定理 4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条

10、直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积S 平行四边形 =底边长高=ah三、矩形 1、矩形的定义有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等) ;对称轴有两条,是对边中点连线所在的直线。3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理 1:有三个角是直角的四边形是矩形(3)定理 2:对角线相等的平行四边形是矩形4、矩形的面积S 矩形 =长宽=ab四、

11、菱形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行(2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等) ;对称轴有两条,是对角线所在的直线。3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理 1:四边都相等的四边形是菱形(3)定理 2:对角线互相垂直的平行四边形是菱形4、菱形的面积S 菱形 =底边长高=两条对角线乘积的一半五、正方形 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四

12、边形叫做正方形。2、正方形的性质(1)正方形四条边都相等,对边平行(2)正方形的四个角都是直角 (3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证它是菱形。先证它是菱形,再证它是矩形。4、正方形的面积设正方形边长为 a,对角线长为 bS 正方形 = 2b六、梯形 (一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底

13、,通常把较短的底叫做上底,较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。(2)一组对边平行且不相等的四边形是梯形。(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。一般地,梯形的分类如下:一般梯形梯形 直角梯形特殊梯形等腰梯形(三)等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。(3)等腰梯形的对角线相等。(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线

14、。3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形(3)对角线相等的梯形是等腰梯形。 (选择题和填空题可直接用)(四)梯形的面积(1)如图, DEABCSABD)(21梯 形(2)梯形中有关图形的面积: ;BA ;OCDS BA七、有关中点四边形问题的知识点(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角

15、线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形;八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转 180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。2、性质(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。3、判定如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。九、四边形、矩形、菱形、正方形、梯形、等腰梯形、直

16、角梯形的关系图第五章 位置的确定一、确定位置1、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做 x 轴或横轴,取向右为正方向;铅直的数轴叫做 y 轴或纵轴,取向上为正方向;x 轴和 y 轴统称坐标轴。它们的公共原点 O 称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被 x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y 轴上的点(坐标轴上的点) ,不属于任何

17、一个象限。3、点的坐标的概念对于平面内任意一点 P,过点 P 分别 x 轴、y 轴向作垂线,垂足在上 x 轴、y 轴对应的数 a,b 分别叫做点 P 的横坐标、纵坐标,有序数对(a,b)叫做点 P 的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时, (a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1) 、各象限内点的坐标的特征点 P(x,y)在第一象限 0,yx点 P(x,y)在第二象限 点 P(x,y)在第三象限 ,点 P(x,y)在

18、第四象限 yx(2) 、坐标轴上的点的特征点 P(x,y)在 x 轴上 , x 为任意实数0点 P(x,y)在 y 轴上 , y 为任意实数点 P(x,y)既在 x 轴上,又在 y 轴上 x,y 同时为零,即点 P 坐标为(0,0)即原点(3) 、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上 x 与 y 相等点 P(x,y)在第二、四象限夹角平分线上 x 与 y 互为相反数(4) 、和坐标轴平行的直线上点的坐标的特征位于平行于 x 轴的直线上的各点的纵坐标相同。位于平行于 y 轴的直线上的各点的横坐标相同。(5) 、关于 x 轴、y 轴或原点对

19、称的点的坐标的特征点 P 与点 p关于 x 轴对称 横坐标相等,纵坐标互为相反数,即点 P(x,y)关于x 轴的对称点为 P(x,-y)点 P 与点 p关于 y 轴对称 纵坐标相等,横坐标互为相反数,即点 P(x,y)关于y 轴的对称点为 P(-x,y)点 P 与点 p关于原点对称 横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 P(-x,-y)(6)、点到坐标轴及原点的距离点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x 轴的距离等于 y(2)点 P(x,y)到 y 轴的距离等于 x(3)点 P(x,y)到原点的距离等于 2三、坐标变化与图形变化的规律坐标( x , y )的变化 图形的变化 x a 或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a, y a 放大(缩小)为原来的 a 倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 x +a 或 y+ a 沿 x 轴或 y 轴平移 a 个单位 x +a, y+ a 沿 x 轴平移 a 个单位,再沿 y 轴平移 a 个单

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。