1、12-1 画出下列各时间函数的波形图,注意它们的区别1)x 1(t) = sin tu(t)1-1 23tx1(t)0 42)x 2(t) = sin ( t t0 ) u(t)01t0tx2(t)-1 3)x3(t) = sin tu ( t t0 )01t0tx3(t)4)x 2(t) = sin ( t t0 ) u ( t t0 )01t0tx4(t)-12-2 已知波形图如图 2-76 所示,试画出经下列各种运算后的波形图01tx(t)-1 1 2 3图 2-76(1)x ( t-2 )201tx ( t-2 )-11 2 3 4(2)x ( t+2 )-31tx ( t+2 )-4
2、-2-10 1(3)x (2t)01tx(2t)-1 1 2 3(4)x ( t/2 )01tx ( t/2 )-11 2 3 4-2(5)x (-t)-31tx (-t)2-2 -1 0 1(6)x (-t-2)3-51t0-4-3-2-11(7)x ( -t/2-2 )-51t0-4 -3 -2 -1 1x ( -t/2-2 )-7 -6-8(8)dx/dt01tdx/dt-1 1 2 3-2- (t-2)2-3 应用脉冲函数的抽样特性,求下列表达式的函数值(1) (t) dt = x(-t0)(0tx(2) (t) dt = x(t0)(0t(3) u(t - ) dt = u( )(0
3、t2t0t(4) u(t 2t0) dt = u(-t0)(0t(5) (t+2) dt = e2-2tetx (-t-2)4(6) (t- ) dt = + ttsin621(7) dtttetj 0= dttj ttetj )(0= 1- = 1 cost 0 + jsint 00tje2-4 求下列各函数 x1(t)与 x2(t) 之卷积,x 1(t)* x2(t)(1) x1(t) = u(t), x2(t) = e-at u(t) ( a0 )x1(t)* x2(t) = = = dtua)tade0)1(ate(2) x1(t) =(t+1) -(t-1) , x 2(t) = c
4、os(t + ) u(t)4x1(t)* x2(t) = dttut )1()1()cos( = cos(t+1)+ u(t+1) cos(t-1)+ u(t-1)44(3) x1(t) = u(t) u(t-1) , x2(t) = u(t) u(t-2)x1(t)* x2(t) = dtutu)1()()()当 t 0 时,x 1(t)* x2(t) = 0当 0t 1 时,x 1(t)* x2(t) = = t0td当 1t 2 时,x 1(t)* x2(t) = = 11当 2t3 时,x 1(t)* x2(t) = =3-t2td当 3t 时,x 1(t)* x2(t) = 0501
5、t1 2 3(4) x1(t) = u(t-1) , x2(t) = sin t u(t)x1(t)* x2(t) = dtu)1( )sin(= 0-t0 1-t0| cos- sin )-(t i = 1- cos(t-1)2-5 已知周期函数 x(t)前 1/4 周期的波形如图 2-77 所示,根据下列各种情况的要求画出 x(t)在一个周期( 0tT )的波形(1) x(t)是偶函数,只含有偶次谐波分量f(t) = f(-t), f(t) = f(tT/2)tT/20 3T/4T/4 T-T/4-T/2f(t)(2) x(t)是偶函数,只含有奇次谐波分量f(t) = f(-t), f(t
6、) = -f(tT/2)tT/20 3T/4T/4 T-T/4-T/2f(t)(3) x(t)是偶函数,含有偶次和奇次谐波分量x1(t)* x2(t)6f(t) = f(-t)tT/20 3T/4T/4 T-T/4-T/2f(t)(4) x(t)是奇函数,只含有奇次谐波分量f(t) = -f(-t), f(t) = -f(tT/2)tT/20 3T/4T/4 T-T/4-T/2f(t)(5) x(t)是奇函数,只含有偶次谐波分量f(t) = -f(-t), f(t) = f(tT/2)tT/20 3T/4T/4 T-T/4-T/2f(t)(6) x(t)是奇函数,含有偶次和奇次谐波分量f(t)
7、 = -f(-t)7tT/20 3T/4T/4 T-T/4-T/2f(t)tT/20 3T/4T/4 T-T/4-T/2f(t)2-6 利用信号 x(t)的对称性,定性判断图 2-78 所示各周期信号的傅里叶级数中所含有的频率分量(a) t2T-2T -T 0x(t)T这是一个非奇、非偶、非奇偶谐波函数,且正负半波不对称,所以含有直流、正弦等所有谐波分量,因为去除直流后为奇函数。(b)t0 Tx (t)-T8这是一个奇函数。也是一个奇谐波函数,所以只含有基波、奇次正弦谐波分量。(c)tT-T -T/2 0x(t)T/2除去直流分量后是奇函数,又 f(t) = f(tT/2),是偶谐波函数,所以
8、含有直流、偶次正弦谐波。(d)t0 T/2x (t)-T/2 T-T正负半波对称,偶函数,奇谐波函数,所以只含有基波、奇次余弦分量。(e)t0 T/2x (t)-T/2 T奇函数、正负半波对称,所以只含有正弦分量(基、谐)(f)9tT-T -T/2 0x(t)T/2正负半波对称、奇函数、奇谐波函数,所以只含有基波和奇次正弦谐波。2-7 试画出 x(t) = 3cos 1t + 5sin2 1t 的复数谱图(幅度谱和相位谱)解:a 0 = 0, a1 = 3, b2 = 5, c1 = 3, c2 = 5|x1| = | (a1-jb1)| = , |x2| = c2 = 31 = arctan
9、 (- ) = 0, -1= 02 = arctan (- ) = - , -2= 523- 1 1 2 1n 1|xn|0-2 112- 1 1 2 1n 10-2 1/2-/2102-8 求图 2-8 所示对称周期矩形信号的傅里叶级数t0 Tx (t)-TE/2-E/2T/2-T/2解:这是一个正负半波对称的奇函数,奇谐函数,所以只含有基波和奇次正弦谐波。 bn = Ttx0dt n si)(2= 20t iETE2dt n si= 20 t )-(tnsi -t n siT= 202T0 |)( cosE |t co TtE= )n s-(1 n 1)- n(s2 ,n 为奇数,n = 1,3,5 E2= )- (cosnE0 ,n 为偶数,n = 2,4,6 x(t) = t5sin 1 t3 si1 tsi 2 指数形式的傅里叶级数0 , n = 0, 2, 4 Xn= (an-jbn) = 21, n = 1, 3, 5 jE