ImageVerifierCode 换一换
格式:DOC , 页数:29 ,大小:1.11MB ,
资源ID:3562689      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3562689.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字信号处理教程程佩青课后题答案解析.doc)为本站会员(坚持)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

数字信号处理教程程佩青课后题答案解析.doc

1、完美 WORD 格式 专业 知识分享 第一章 离散时间信号与系统2.任意序列 x(n)与 (n)线性卷积都等于序列本身 x(n),与 (n-n0)卷积 x(n- n0),所以(1)结果为 h(n) (3)结果 h(n-2)(2)列表法x(m)()hmn1 1 1 0 0 0 0 y(n)0 1 11 1 1 22 1 1 1 33 1 1 1 1 34 0 1 1 1 1 25 0 0 1 1 1 1 1(4) 3 .已知 ,通过直接计算卷积和的办法,试确10,)1()( anuah定单位抽样响应为 的线性移不变系统的阶跃响应。4. 判断下列每个序列是否是周期性的,若是周期性的,试确定其周期:

2、 )6()( )n31si()( 87conjexcAnxba分析:序列为 或 时,不一定是周期序列,)co()(0)si(0Anmmmnnyn 23125.0)( 0 1当34 nmnmmnnyn 225.0)( 1 当 anynnhxnyauahmn1)(1)(*10,)1()(:时当 时当解完美 WORD 格式 专业 知识分享 当 整数,则周期为 ;0/20/2 ;为为 互 素 的 整 数 ) 则 周 期、( 有 理 数当 , QQP当 无理数 ,则 不是周期序列。0/)(nx解:(1) ,周期为 14142/3(2) ,周期为 606/(2) ,不是周期的0/127.(1)121212

3、()()()()()()()()()()TxngxnabgaxnbgnaxgnbxT所以是线性的Tx(n-m)=g(n)x(n-m) y(n-m)=g(n-m)x(n-m)两者不相等,所以是移变的y(n)=g(n)x(n) y和 x括号内相等,所以是因果的。 (x 括号内表达式满足小于等于 y括号内表达式,系统是因果的)y(n)=g(n)x(n)=0 时系统是因果的,稳定(5)线性,移变,因果,非稳定(7)线性,移不变,非因果,稳定(8)线性,移变,非因果,稳定8.完美 WORD 格式 专业 知识分享 不 稳 定 。是 因 果 的 。时当解 : ,10|)(| ,)( ,)1( 2nhn稳 定

4、 。 !是 因 果 的 。时 ,当381421*210|)(| ,)()2(nhn不 稳 定 。是 因 果 的 。时 ,当 2103|)(| ,)()3(nhn稳 定 。是 非 因 果 的 。时 ,当 233|)(| ,)()4( 210nhn系 统 是 稳 定 的 。系 统 是 因 果 的 。时 ,当 7103.03.0|)(| ,)( )5( 21nhn系 统 不 稳 定 。系 统 是 非 因 果 的 。时 ,当213.0.|)(|)( )6(nhn系 统 稳 定 。系 统 是 非 因 果 的 。时 ,当 1|)(| 0)( 7nhnh完美 WORD 格式 专业 知识分享 第二章 Z 变换

5、1 求以下序列的 z 变换,并画出零极点图和收敛域。(7)分析:Z 变换定义 ,n 的取值是 的有值范围。nzxzXx)()( )(nxZ 变换的收敛域是满足 的 z 值范围。Mznn)(解:(1) 由 Z 变换的定义可知:zaza,0 1, 1 , 零 点 为 :极 点 为 : 即 :且收 敛 域 :解:(2) 由 z 变换的定义可知: nnnzuX)(21)(nnzazX)( nnzaz01n01)(1)1)(22azazz)(21)(nux)(21)(2nux)1(2)(3nunx ,4为 常 数 )00(,si51,)co()(6 rnuArxn|a完美 WORD 格式 专业 知识分享

6、 0)21(nnz1z21 2 zz即 :收 敛 域 :0 1 z零 点 为 :极 点 为 :解:(3 ) nnnzuzX)1()2)( 1)2(nz1nzz2z21 z即 :收 敛 域 :0 z零 点 为 :极 点 为 :解: (4) 1)(nzzX,11)()(nnzdz 21)(zzn|)(2)(nunx)(,1)4(x完美 WORD 格式 专业 知识分享 。的 收 敛 域 为故 的 收 敛 域 相 同 ,的 收 敛 域 和因 为 1|)()(lnl(n)(zzXdXzzz ,0零 点 为 :极 点 为 :解:(5) 设 )(sin)(0uy则有 1|cos21in20zzzyzYnn

7、,而 )()(x zYdzX 1|,)cos21(in202zz因此,收敛域为 : zzejj ,0,1, 0零 点 为 : ( 极 点 为 二 阶 )极 点 为 : 解:(6) 1 ,cos21)( cos2insincss)( )()(o(c ii)(s)201 201000 zzz zzzzY uunny设 。:的 收 敛 域 为则 而的 收 敛 域 为则 | )( cos21)()() )( 201rzzXzrArYnyAxz (7)Zu(n)=z/z-1为 常 数 )0i5x1)(co()(6rnuArxn完美 WORD 格式 专业 知识分享 Znu(n)= 2-z1()dz223Z

8、nu()=()z零点为 z=0,j,极点为 z=11 12 123., ()2 (1), z (2) , z4441 1 (3), z (4) , z81 535XzXzzaXzaz 用 长 除 法 留 数 定 理 部 分 分 式 法 求 以 下 的 反 变 换分析:长除法:对右边序列(包括因果序列) H(z)的分子、分母都要按z的降幂排列,对左边序列(包括反因果序列) H(z)的分子、分母都要按 z的升幂排列。部分分式法:若 X( z)用 z的正幂表示,则按 X(z)/z 写成部分分式,然后求各极点的留数,最后利用已知变换关系求 z反变换可得x( n) 。留数定理法: 。号 ( 负 号 )”

9、数 时 要 取 “用 围 线 外 极 点 留,号 ( 负 号 )必 取用 围 线 内 极 点 留 数 时 不)( 。现 的 错 误 这 是 常 出,相 抵 消)(来 和不 能 用,消 的 形 式 才 能 相 抵的 表 达 式 中 也 要 化 成因 而注 意 留 数 表 示 是)( 2 )1/( )/(1 ) ()( Re1 1 kk kn knnzzzX zXzXs(1) (i)长除法: 1214)(zzX,2/|,/1而 收 敛 域 为 :极 点 为按 降 幂 排 列 分 母 要为 因 果 序 列 , 所 以 分 子因 而 知 )(nx2142z11z完美 WORD 格式 专业 知识分享 2

10、14z021 42)(nnzzX所以: )(21)(uxn(1)(ii)留数定理法:, 设 c 为cndzjn12)(内的逆时针方向闭合曲线:2z当 时,0n在 c 内有nzz211一个单极点2则 0 ,21Re)( nzsnxn,是 因 果 序 列由 于 )(nx0 0 时 ,故)(21)( nunx所 以(1)(iii)部分分式法:2114)(2zzX完美 WORD 格式 专业 知识分享 因为 21z所以 )()(nunx(2)(i). 长除法:,41,41zz而 收 敛 域 为由 于 极 点 为因而 是左边序列,所以要按 的)(nx升幂排列:218zz241287z321z12478 8

11、)(nnzzzX所以 )1()()( ux(2)(ii)留数定理法:内的逆时针方向闭合曲线41 )( 1)(1,为设 zcdzXjnxcn时 :当 0 在 c 外有一个单极点 1)(nz 41z完美 WORD 格式 专业 知识分享 )0( ,)41(7 Re41nzXsnxn时 :当 0 n在 c 内有一个单极点1)(zXz 0,8)(Re01nzXsxzn,内 无 极 点在时 :当 0 cn,)(x则 :综上所述,有: )1()47(8)nun(2)(iii). 部分分式法:478)(2zzX则 1417)因为 则 是左边序列z)(nx所以 )1(78)(u(3)(i). 长除法:因为极点为 ,由 可知, 为az1z)(nx因果序列, 因而要按 的降幂排列:221)()(zazaz11)()1(zaa

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。