1、高考文科数学模拟试卷文科数学 (总分 150 分 时间 120 分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1设全集 ,集合 = ,则 的值为( 7,531U,|,|,1UMaC7,5a)A 或 B 或 C 或 D 或288228282复数 的实部是 ( 431i)A-2 B2 C3 D43已知 ,且 第四象限的角,那么 的值是 ( )5)sin( )2cos(A B C D4454534在等差数列 中, ,其前 项和为 ,若 ,则na1208nnS102S的值等于( )208S 7 7 85 是直线 垂直的( )1m
2、0301)2( myxymx和 直 线A充分而不必要条件 B必要而不充分条件C充要条件 D既不充分也不必要条件6设 a, b, c 是空间三条直线, 是空间两个平面,则下列命,题中,逆命题不成立的是( ) A当 /,则若时 B当 则若时C当 bacacb 则若内 在 射 影 时在是且时 ,D当 b/,/,则若时且 7阅读右图的程序框图。若输入 m = 4,n = 6,则输出a 、i 分别等于( )A12,2 B12,3 C24,3 D24,28函数 的图像经过四个象限的充要条件axxf9)(3( )A B C D 0a301275a9、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm
3、) ,可得这个几何体的体积是( )A B31cm32cC D343810、 点 P 是双曲线 的右支上一点,M 、N 分别是圆 =1 和圆142yx 2)5(yx上的点,则|PM |PN|的最大值是 ( )1)5(2yxA 头htp:/w.xjkygcom126t:/.j 2 B 头htp:/w.xjkygcom126t:/.j 4 C 头htp:/w.xjkygcom126t:/.j 6 D 头htp:/w.xjkygcom126t:/.j 8二、填空题(本大题共 7 小题,每小题 4 分,共 28 分,把答案填在答题纸上)11、不等式 的解集为 . 12若函数 在区间 内有且只有一个零点,
4、那么实数 的取值范2()lnfxax(12) a围是 . 13 头htp:/w.xjkygcom126t:/.j 在 RtABC 中,C=90,A=30,则 A、B 为焦点,过点 C 的椭圆的离心率 头htp:/w.xjkygcom126t:/.j 14、如果实数 满足不等式组 的最小值是 . 210,2xyxy则15、设平面内有 条直线( ) ,其中有且仅有两条直线互相平行,任意三条直线不过n3同一点。若用 表示 条直线交点的个数,则 时 = (用 表()f 4n()f n示). 16、把正方形 ABCD 沿对角线 BD 折成直二面角,对于下面结论:ACBD;CD平面ABC;AB 与 BC
5、成 600 角;AB 与平面 BCD成 450 角。则其中正确的结论的序号为 17已知 当 mn 取得最小值12(,),mn时,直线 与曲线 的交点个数为 yxx1y(注:请将选择题、填空题的结果填写到答题卷上)高考文科数学模拟试题答题卡(本卷满分 150 分,考试时间 120 分钟) 2008.11.30一选择题(每小题 5 分,共 50 分)1 2 3 4 5 6 7 8 9 10二填空题(每小题 4 分,共 28 分)11_ 12_ 13_ 14_15_ 16_ 17_三.解答题(共 5 大题,共 72 分)18 (本题满分 14 分)已知向量 ,且 。(sin,co),(12)mAmn
6、(1)求 tanA 的值;(2)求函数 R)的值域.()cos2tai(fxx班级_学号_姓名_-装-订-线-19 (本小题满分 14 分)如图,已知三棱锥 ABPC 中,APPC,ACBC,M 为 AB 中点,D为 PB 中点,且PMB 为正三角形。(1)求证:DM/平面 APC;(2)求 证:平面 ABC平面 APC;(3)若 BC=4,AB=20,求三棱锥 DBCM 的体积。20、 (本小题满分 14 分)已知函数 图像上的点 处的切线方程为 32fxaxbc1,2P31yx(1)若函数 在 时有极值,求 的表达式fx(2)函数 在区间 上单调递增,求实数 的取值范围。fx2,0b21.
7、(本题满分 15 分)已知:数列 满足na(1)求数列 的通项21132naNna(2)若 ,求数列 的前 n 项的和nbbnS21 (本小题满分 15 分)已知可行域 的外接圆 C 与 x 轴交于点 A1、A 2,椭圆 C1 以线段0,32,yxA1A2 为长轴,离心率 2e(1)求圆 C 及椭圆 C1 的方程;(2)设椭圆 C1 的右焦点为 F,点 P 为圆 C 上异于 A1、A 2 的动点,过原点 O 作直线PF 的垂线交直线 于点 Q,判断直线 PQ 与圆 C 的位置关系,并给出证明2x高考文科数学模拟试卷参考答案:一、选择题 D B A B A B B D C C二填空题 11、 1
8、2、 13、 14、5 15、 0,21),(e13(1)2n16、 17、218、解:(1)m n=sinA2cos A=0,得 tanA=2. 6 分(2) 10 分2 213()cosi1sini(sin).fxxxx当 时,f(x )有最大值 ;当 sinx=-1 时,f(x)有最小值-3sin3所以 f(x)的值域是 14 分,.219 (本小题满分 14 分)解(1)M 为 AB 中点,D 为 PB 中点, MD/AP, 又MD 平面 ABCDM/平面 APC。 (4 分)(2)PMB 为正三角形,且 D 为 PB 中点。 MDPB。又由(1)知 MD/AP, APPB。又已知 A
9、PPC AP平面 PBC, APBC, 又ACBC。BC平面 APC, 平面 ABC平面 PAC, (9 分)(3)AB=20 MB=10 PB=10又 BC=4, .2184160PC .212BCSBBD又 MD .3512AV D-BCM=VM-BCD= 14 分7013MBDC20、 (本小题满分 14 分)解: , -2 分 2fxaxb函数 在 处的切线斜率为-3, ,即 3 分1132fab20ab又 得 。-4 分2fcc(1)函数 在 时有极值,所以 ,-5 分fx22140fab解得 ,-7 分,43abc所以 -8 分2fxx(2)因为函数 在区间 上单调递增,所以导函数
10、,0 23fxbx在区间 上的值恒大于或等于零,-10 分,0则 得 ,所以实数 的取值范围为 -14 分12,fb4b4,21、解(1)n=1 时, 1 分1a时, (1)2n2132na(2)3 分12 1n(1)-(2)得 , 5 分na又 适合上式 7 分a2n(2) 8 分nb231nnS10 分12 2nn13 分1112nn15 分12nnS22 (1)由题意可知,可行域是以 及点 为顶点的三角形,12(,0)(,A(1,3)M , 为直角三角形, 2 分2AM12外接圆 C 以原点 O 为圆心,线段 A1A2 为直径,故其方程为 4 分2xy2a=4, a=2又 , ,可得 2eb所求椭圆 C1 的方程是 7 分214xy(2)直线 PQ 与圆 C 相切设 ,则 0(,)2)Px22004yx当 时, , ;0x(2,)1OPQkAP当 时,000,OPQyxkyx直线 OQ 的方程为 因此,点 Q 的坐标为 02y )42,(0yx ,02000024()()2PQxyxxxk yy当 时, , ;0xPQkO当 时候, , 00yx1,PQkPA综上,当 时候, ,故直线 PQ 始终与圆 C 相切 15 分02x
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。