1、1平方差公式教学设计合肥市蜀山区江淮学校 江卫三 设计意图在很多人的印象中,代数除了繁琐的计算就是空洞的符号,是一门内容枯燥、脱离实际的课程。事实上,代数是一门具有丰富内容并且与现实世界、学生生活、其他学科联系十分密切的学科;同时代数也是一门基础的数学学科,它为数学本身和其他学科的研究提供了语言、方法和手段。它的符号表示手段,深刻地揭示了存在于一类实际问题的共性,有助于人们对现实世界的认识;它的运用代数式、表格、图象等多种表示方法,不仅为解决实际问题提供了重要的策略,而且为数学交流提供了有效的途径;它的模型化的方法、表示的思想、方程的思想、函数的思想以及推理的方法等也为数学本身和其他学科的研究
2、提供了基础。本节课选自沪科版七年级下册第三章第三节。在前面内容的学习中,学生已经学习了幂的运算和整式乘法运算,通过类比小学的简便运算的运算法则,他们会产生“整式的运算会不会有简便运算” 、“有没有简便运算的法则” 等问题。 为此,在教学中,我有意识地培养学生的推理能力,鼓励学生通过合情推理进行大胆推测,利用符号间的运算验证猜测或解决问题,同时鼓励学生有条理地表达自己的思考过程,最后通过多媒体拼图动态演示,给出平方差公式的一个几何解释。2几点说明本节课在教学设计上从以下几个方面出发,注意创建适合学生发展的教学思路。1、以提高兴趣,培养能力为中心。不求 过分讲细,讲全,只求调动所有学生积极参与,提
3、高学生学习数学的积极性。2、教学过程始终关注中下等学生。布卢姆认为,学习成绩差的学生,就是教师忽视了教学反馈,未能及时对学生某些没有学会的知识进行补救,给学生以后的学习造成了困难。因此,教学过程的每一个环节都要注意教学反馈。通过课堂提问、观察、练习、谈话等及时获得学生学习情况的反馈信息,随时调节教学。3、前后六人为一学习小组,分组讨论交流,组长把关。4、提供学生交流、讨论的空间,多 让学生从中体会数学的应用价值,养成谈数学、想数学、用数学的良好习惯。5、时间让给学生,教 师只是学生学习的组织者、引导者、合作者。3平方差公式教学设计教学目标:1、 知识目标:会推导平方差公式,并能运用公式进行简单
4、的计算。2、 能力目标:经历探索平方差公式的过程,进一步培养学生分析、综合和抽象、概括以及运算能力。3、 情感目标:让学生在民主、和谐的共同学习过程中感受学习的乐趣。教学重点:1、平方差公式的应用。2、学生能力的培养。 教学难点:用公式的结构特征判断题目能否使用公式。课型:新授课学具准备:沪科版七年级教材下册 方格纸 刻度尺 剪刀 草稿纸 教具准备: 多媒体 教学过程:一、设置情境,探究新知1、学生练习(目的:一使学生进入状态,二巩固以前所学知识,三引入今天学习内容)(多媒体出示第 1 张幻灯片)一、我会很快做好(多项式乘以多项式)1、 (x+2) (x2)2、 (1+3a) (13a)3、
5、(x+5y) (x5y)4、 (y3z) (y3z)42、组内交流答案;然后教师提出问题,你发现了什么?再分组讨论,交流体会。3、选代表发言,交流 讨论结果。学生可能回答:(1)两个二项式相乘,积可能是二项式,接着问:具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢? 你能不能再举例?(2)两数和与它们的差的积,等于这两数的平方差,等等。让同学们畅所欲言,只要合理,都给予肯定。4、选一个学生上黑板用语言写出本节所需要的结论:两数和与它们的差的积,等于这两数的平方差。5、教师在黑板上写出课题及公式: (ab)(a b)a 2b 26、说一说:知道这一规律有什么好处
6、?(来源于整式乘法,用于整式乘法的辩证思想)。注意:探究新知时,尽量由学生发现,这样有利于理解公式、运用公式;避免机械记忆公式,模仿公式。二、运用新知,试做例题1、学生试做例题(教师巡视,辅导学习有困难的学生)(多媒体出示第 2 张幻灯片)2、组内交流计算结果,组长汇报本组情况。 3、多媒体出示答案,选一题点评, 强调解题步骤,规范学生的解题格二你能运用刚才的规律,计算下列各题吗?(1) (56x) (56x) (2) (x2y) (x2y)(3) (-mn) (-mn)5式。三.练习强化,灵活运用(目的:这两道题练习,使学生灵活掌握公式)1、判断题(多媒体出示第 3 张幻灯片) 学生通过对这
7、些判断题的讨论甚至争论,加强对公式的掌握,同时也培养学生一定的批判性思维能力。2、计算:(多媒体出示第 4 张幻灯片)教学方法:先让学生练习,然后分组交流,接着选一名同学讲解各题方法。 让采用不同解法的两个学生进行板演或发生错误的学生板演。最后教师提出问题:使用公式应注意哪些?教师活动:让学生在练习本上计算时,教师巡视学生解题情况。 解法 1:(-x-2)(-x+2)=-(x+2)-(x-2)解法 2:(-x-2)(-x+2)=(-x)2-22根据学生板演,教师指出两种解法都很正确,解法 1 先用了提出负号的办法,使两项式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,
8、写出结果解法 2 把-x 看成一个数,把 2 看成另一个数,直接写出(-x)2-22 后得出 结 果采用解法 2 的同学比较注意平方差公式的特征,能看到问题的三、巩固提高1.想一想,下列各式中,哪些能利用平方差公式计算?哪些不能利用平方差公式计算?为什么?(1) (x+y)(x-y); (2) (x-y)(y+x); (3) (-x+y)(-x+y);(4) (-x-y)(x-y); (5) (-x+y)(-x-y); (6) (x-y)(-y+x)2想好再做 (下列习题,你能用公式来计算吗? )(1) (2x ) (2x ) ; (2) (x2) (x2) ;21(3) (2xy) (2xy
9、) ; (4) (yx) (xy)6本质,运算简捷因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。四四 动手操作,理解公式(目的:体会数形结合的思想,又一次加深对公式的理解) 。1、展示多媒体画面(一边教师做演示实验,一边学生跟着做实验)。观察动画图,再用等式表示下图中图形面积的运算:2、学生分组动手操作,加深理解。这时有的学生可能疲劳,安排动手操作,一是提高 兴趣,二是消除疲 劳。五、知识升华 培养能力1、计算题(多媒体出示第 6 张幻灯片)abba baAA B B CC BD CE B割补法a2b 2 ( ab ) (a b)即:( ab )(
10、a b )a2b 2四.我们一道做实验A五.知识拓展,提高能力 1. 你会用今天的知识完成下列计算吗? 19982002 49850299910017教学方法:为满足学生的表现欲,选一名同学上台讲解一题,其它两题再做练习启发提问:要运用平方差公式进行简便运算,就要变为两数的和与这两数的积的形式,关键找到这两个数。2、用数学知识解决实际问题(多媒体出示第 7 张幻灯片)教学方法:先让学生思考,然后 组内交流答案,最后提出问题,通过这道题,你发现了什么? 问:前后周 长、面积如何变化?“2”改为“3”呢? 小结:进一步认识到“ 周长 一定时,四边形中正方形的面 积最大(因为以前我们已经知道)”。(
11、目的:一培养学生谈数学、想数学的 习惯,二是为做下一题作好准备)再做下列练习(多媒体出示第 8 张幻灯片):教学方法:先让学生思考,然后由学生讲解。六小结本节知识1什么是平方差公式?2运用公式要注意什么?(1)要符合公式特征才能运用平方差公式。(2)有些式子表面不能应用公式,但实质是能应用公式,要注意变形,归纳易错的地方。(3)指出公式中的 a、b 可以代表数字、字母, 还可以代表式子。教学方法:教师提出问题,这节课你学到了什么?先分组交流,然后选代表发言,其余记录。这样有利于人人参与,克服一节课下来,注意力不集中的毛病,同时2.学数学,用数学,请看下列题目(1).街心花园有一块边长为 a 米
12、的正方形草坪,经统一规划后,南北向要加长 2 米,而东西向要缩短 2 米。问改造后的长方形草坪的面积是多少?2、学数学,用数学,请看下列题目:(2).用一定长度的篱笆围成一个矩形区域,小明认为围成一个正方形区域面积最大,而小亮认为不一定。你认为如何?8通过学生的思考,可以提高学生归纳和创新思维能力。七.学生练习1、思考:在横线上填上适当的代数式,使它能用平方差公式进行计算:(目的:一进一步认识公式结构特点;,二因每题有多个答案,培养学生开放性思维) (2a3b) (2a 3b) _2、看谁做得快? 计算:103 232 (目的:一培养学生逆向思维的能力,二为以后学习因式分解铺垫)3.下列各式的
13、计算对不对?如果不对,说明形成错误的原因(目的:一培养细心能力,二突破难点)。(1)(7m+8n)(7n-8m)=49m2-64n2; (2)(5ab+l)(5ab-l)=25a2b2-1;(3)(3+2x)(3-2x)=9-2x2;(4)(3x-y)(-3x+y)=9x2-y2;(5)(x+6)(x-6)=x2-6; (6)(2x2+5)(2x2-5)=4x2-25根据学生的回答,教师强调指出,运用平方差公式 时应注意:(l) 判断两个二项式相乘能否利用平方差公式计算的标准是一个二项式是两数的和,另一个二项式是这两数的差;(2)结果是平方差,且两个数(项)的位置不能弄错;(3)必须注意系数、指数的变化,还要注意字母的不同。4、 选做题:若 A(2+1)(2 2+1)(24+1)(28+1)(264+1),则 A 的值是( ) A. 264+1 B. 264-1 C. 2128-1 D. 2128+15、选做题:计算:(a b)(a2+b2)(a+b)教学反思 本节课的教学设计经过实际的教学检验。教师的体会:在这节课的教学过程中 ,学生的思维始终保持着高9度的活跃性,真正体现了人人参与,不同的人学习不同的数学,效果明显。个别学生对变形的能否运用公式运算出现困难,要加强辅导。
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。