ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:1.02MB ,
资源ID:3629079      下载积分:5 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3629079.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(清华大学本科毕业论文.doc)为本站会员(坚持)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

清华大学本科毕业论文.doc

1、第 1 章 概 论1.1 计算机、生物神经网络与人工神经网络神经网络作为人工智能的一个分支,在近二十年来,受到人们的广泛关注。工业革命以来,人类大量采用机器来减轻人们的体力劳动,并获得了巨大的效益。同样,人类为了通过使用某种机器来减轻人类的脑力劳动,也一直进行着不懈的努力。到了 20 世纪 40 年代,由于计算机的发明,使得人类的文明进入到计算机时代。通过使用计算机,人们可以解决科学计算和工程设计中的一些复杂的问题,在一定程度上减轻了人们的脑力劳动。然而,计算机需要在人们事先编制好的程序的指挥下才能工作,从这个意义上讲,计算机并没有真正意义上的智能。目前,计算机的主要应用仍然是信息处理和科学计

2、算,对于智能计算,像分析、推理、判断、综合等方面,现代计算机仍然显得能力低下。因此,智能计算机的开发研究成了一个十分引人关注的问题,科学家们也为此投入了巨大的研究热情,一些发达国家也投入大量的人力物力来开发智能计算机。然而,由于人类对于智能的理解还十分肤浅,开发智能计算机也遇到了巨大的挑战,可以说,到目前为止,智能计算机还仅仅是一个梦想。揭开智能之谜还需要进行大量的研究,这里面涉及到诸多方面的理论知识,包括计算机理论、信息处理、语言学、认知科学、数学、生理学、解剖学、哲学等方面的知识。因此,智能计算机的发展还需有一个相当漫长的过程。在应用方面,对于智能计算和智能计算机的发展也是非常迫切的。例如

3、,一些危险行业以及恶劣的工作环境,人们需要机器人来帮助工作,然而,机器人技术的发展离不开智能计算和智能计算机。可以说,智能计算机在当今人类社会发展的进程中,已经被提到了议事日程,是当今人类社会所面临的一项迫切而又重大的科技问题。自从 20 世纪 40 年代人类发明计算机以来,可以说其发展速度一日千里。计算机改变了人们的生活方式,带来了信息技术的革命。传统计算机的存储能力、计算速度的发展非常快,主要得益于硬件的发展。相对而言,计算机体系结构的发展比较缓慢,基本上还是冯诺依曼体系。它只能在人的指挥下工作,没有学习、创造等反映智能特征的能力。对于许多模式识别的问题,现代计算机的工作能力和效率还远不如

4、人。笔者认为,智能计算及其发展需要突破传统的冯诺依曼体系,建立新型的计算机体系结构,当然,任重道远,需要科学家们的不懈努力。智能计算的核心问题是关于人脑功能的模拟问题,这需要回答什么是智能、什么是计算、什么是智能计算等复杂的问题。然而,遗憾的是,人类对于这些问题尚缺乏深刻的认识,还处在探索阶段。尽管如此,人类并没有在研究智能计算机的道路上止步不前,目前认为,人类的大脑中的神经元对于人脑的智能起着关键的作用,这些神经元的数量非常多,组成了十分复杂的生物神经网络。神经网络系统理论是以人脑的智能功能为研究对象,研究人类大脑的信息处理能力与方法,特别是研究与人类大脑的智能信息处理能力相关的信神经网络新

5、理论与方法2息处理理论与方法,建立智能计算的理论与方法,为智能计算机的研究开发奠定理论基础。由于生物神经网络的复杂性,目前人们主要是通过人工神经网络的方法进行研究,所以本书中考虑的神经元不是生物神经元,而是模拟生物神经元的人工神经元,人工神经元是对生物神经元极其简单的抽象,可以使用现代电子、光学等技术制造出来。所谓人工神经网络是由人工神经元按照一定的拓扑结构互连而成的网络,用来模拟人的大脑的一些行为。虽然由这些人工神经元组成的网络的能力远远不及人脑的那么强大,但是可对其进行训练,可以实现一些有用的功能。目前主要是利用人工神经网络模拟一些比较低级的行为,至于如何模拟人的智能中比较高级的功能,还需

6、要进行大量的深入研究。人类是智慧生命,生命的每一天都要处理许多复杂的事物,要完成生理的、心理的等复杂的信息处理,比如呼吸、运动、阅读、思考等,而完成这些功能需要使用一个复杂的生物神经网络。人的大脑有约为 1011 个神经元,每一个生物神经元都是生物组织和化学物质的有机结合。某些神经结构是与生俱来的,而其他一些则是在实践中形成的。这些神经元高度互连的集合,构成了生物神经网络,网络中的每个神经元都是基本的处理单元,一种观点认为,每一个生物神经元都是一个复杂的微处理器。人类大脑的工作机理十分复杂,目前,人类对大脑的认识还很肤浅,揭开大脑思维之谜任重道远,需要坚持不懈的努力。一般认为,所有生物神经功能

7、,包括记忆在内,都存储在神经元以及各个神经元之间的相互连接上,这种连接称为连接权或简称为权。生物神经网络的学习过程被看作是在生物神经网络的神经元之间建立新的连接或对已有的连接进行修改的过程。正是基于对生物神经网络的这样一个基本认识,使得人们想到利用一些简单的“人工神经元”构造一些人工系统,然后对其进行训练,目的是使这些系统具有一定的智能。本书主要是对于大脑的学习能力进行了一些人工模拟,本书中的所有算法都是作者提出的,这些算法不同于传统的算法,希望能够起到抛砖引玉的作用。1.2 本书的目的与价值创新是本书的目的。本书中提出了一系列全新的前馈神经网络理论与算法,这些新的理论与算法主要分成两类:一类

8、本书将其取名为代数算法,另一类本书将其取名为样条函数神经网络算法。衡量一个新理论与方法的价值在于把它和已有的传统方法相比较,如果新理论与方法能革除传统理论方法的缺点,那么新理论方法就有价值,革除得越彻底,价值就越大。衡量本书的价值应与传统的优化类算法进行比较(例如 BP 算法等梯度下降类最优化算法)相比较。1代数算法代数算法不再采用以梯度下降为核心思想的误差反向传播学习算法,只要隐层神经元个数与样本个数满足一个简单的代数关系,代数算法便能快速实现给定样本的精确映射第 1 章 概论 3(或者说,准确地“回想”起所学过的样本) 。(1)本书提出的代数算法在理论和应用上能使代价函数为 0。对 BP(

9、反向传播)算法而言,通常代价函数大于 0,这意味着代数算法的精度远高于 BP 算法。或者更确切地说,代数算法能准确地获得全局最优点,而 BP 算法通常无法获得全局最优点。(2)从时间复杂度上来看,代数算法无须迭代计算,是一种多项式阶算法,而 BP算法的时间复杂度目前尚未见到理论上的报道,但通过一些实验研究认为其时间复杂度为指数阶(见第 3 章) 。多项式阶算法的时间效率远优于指数阶算法,因而本书算法较 BP算法要快得多,可求解问题的规模也要大得多。(3)从工程应用上看,代数算法给出了隐层所需神经元个数的准确计算方法,而 BP算法只能给出一些经验数据,这意味着本书新方法在工程应用中具有比 BP

10、算法优越得多的指导作用。综上所述,可以认为代数算法开辟了多层前馈人工神经网络算法的一个新领域,在理论和应用上都具有重要的价值。另外,本书的另一个重要创新是对工程上常用的三层神经网络的极限逼近能力进行了深入的分析,得出了一系列重要的结果。这些结果指出,必然存在代价函数最小值为 0 的三层神经网络(此时对应的解为全局最优解) ;如果三层神经网络的隐层神经元个数固定(即为某一确定的不可调整的常数) ,则对一些给定的样本,该三层神经网络的代价函数最小值将大于 0,这意味着此时三层神经网络的逼近精度是有限的,它不可能使神经网络以任意精度趋近于 0。这一结论深刻地揭示了隐层神经元个数的选择将直接影响到三层

11、神经网络的极限逼近能力,或者说,将直接影响到三层神经网络的全局最小代价函数值的大小。不仅如此,还给出了一个非常有实用价值的便于计算的估计公式。利用这一估计公式,可使网络在训练之前就知道该网络对给定训练样本的极限逼近能力,这一结果对前馈网络训练学习算法的停机准则有重要的理论指导意义。以上的创新构成了本书的核心与精华。2样条函数神经网络算法虽然代数算法克服了传统算法的主要缺点(例如速度慢,难以求得全局最优值,无法确定隐层神经元个数等) ,但由于代数算法实现精确映射的一个充分条件是隐层神经元的个数等于训练样本的个数(见第 3 章) ,这使得当训练的样本数量很多时会使得神经网络隐层神经元的个数太多,使

12、得神经网络的结构复杂。另外,代数算法与传统算法的共同缺点是训练后的权值是常数,难以反映样本的内在信息。为了克服代数算法的缺点,本书作者提出了样条函数神经网络算法。样条函数神经网络算法首先改造了传统神经网络的结构,使得神经网络的结构与训练样本个数无关。另外,样条函数神经网络算法将常数权改成了权函数,即看成输入样本的函数,采用三次样条函数来实现。这样做将权与样本之间建立起了联系,可以反映训练样本的信息。训练后的神经网络,其权函数可以很好地反映样本的特征信息。样条函数神经网络算法同样可以实现代价函数为 0 的精确映射,能够方便地求得全局最优点。不仅如此,样条函数神经网络算法还具有很好的泛化能力(见第

13、 6 章)另外,从时间复杂度上来看,样条函数神经网络算法的主要计算工作是求线性方程组,神经网络新理论与方法4确定三次样条函数,是一种多项式阶算法,因而样条函数神经网络算法较 BP 算法要快得多,可求解问题的规模也要大得多。总之,样条函数神经网络算法既具有代数算法的优点,又克服了代数算法和传统算法的缺点,是一种非常好的算法,笔者认为值得推广。1.3 神经网络的发展历史简介人工神经网络的发展起源于何时,说法不一。一般认为,其起源可追溯到 Warren McCulloch 和 Walter Pitts 于 1943 年的论文 1,这篇文献根据已知的神经细胞生物过程原理,构造了一个简单的人工神经元模型

14、,后来,人们称它为 M-P 模型。文献1介绍了第一个神经元数学模型,其神经元的输入信号加权和与阀值比较再决定神经元是否输出。这是人类历史上第一次对大脑工作原理描述的尝试,从原理上证明了人工神经网络可以计算任何算术和逻辑函数。20 世纪 40 年代末期,Donala O.Hebb 在文献2中首先定义了一种调整权的方法,称为 Hebb 学习规则(Hebbian rule) 。这本著作的主要假定是行为可以由神经元的行为来解释。在这本书中 Hebb 提出的第一个学习规则,可以认为是在细胞一级进行学习的基本原理。Donald Hebb 指出,经典的条件反射是由单个神经元的性质引起的。他提出了生物神经元的

15、一种学习机制。20 世纪 50 年代后期,Frank Rosenblatt 定义了一种以后常用的神经网络结构,称为感知器(perceptron) 。Frank Rosenblatt3提出了感知机网络和联想学习规则。Rosenblatt 构造了一个感知机网络,演示了进行模式识别的能力。这是人工神经网络第一个实际应用,这次成功应用引起了许多学者对神经网络的研究兴趣。但后来的研究表明基本的感知机网络只能解决有限的几类问题。20 世纪 60 年代,两个训练自适应神经元的方法感知机规则及 LMS 算法规则相继出现。Bernard Widrow 和 Ted Hoff 在文献4中介绍了能进行快速、准确学习的

16、神经网络,文中假设系统的输入和对每一个输入所期望的输出,然后神经网络计算实际输出与所希望的输出的误差,采用梯度下降法调整权值,以达到最小均方误差(最小均方误差算法或 LSM 算法) 。另外,Bernard Widrow 和 Ted Hoff 提出了一个新的学习算法用于训练自适应线性神经网络。在这些方法出现后的若干年内,神经网络领域的一些新技术得到迅速发展,如Steinbuch 的学习矩阵, Widrow 的 Madaline 规则,竞争学习,等等。20 世纪 70 年代,Grossberg 提出了自适应共振理论。Grossberg 研究了两种记忆机制 (短期记忆和长期记忆) ,提出了一种基于可

17、视系统的自组织神经网络 5,这是一种连续时间竞争网络,是构成自适应谐振理论(ART)网络的基础。另外,Kohonen 创立了自组织理论。20 世纪 80 年代,Hopfield 及一些学者提出了 Hopfield 网络模型 6,这是一种全连接的反馈型网络。Hopfield 提出了按内容寻址的神经网络,同时还给出了有关他的网络是如第 1 章 概论 5何工作的以及该网络能够做什么的完整描述。另外,Hinton 等提出了 Boltzman 机。Kosko 发展了 Hopfield 及 Grossberg 的一些概念,提出了双向自联想记忆网络,该网络中使用了微分 Hebb 及竞争学习规则。另外,20

18、世纪80 年代末期,Chua 等人提出了细胞神经网络。多层前馈网络是目前应用最为广泛的神经网络模型之一,其神经元结点分层排列,组成输入层、隐层和输出层,每层的神经元只接收前层神经元的输出信号。多层前馈神经网络的反向误差传播训练算法(可简称为 BP 算法)首先是由 Werboss 在他的博士毕业论文中提出 7,但不幸的是,他首先发表于 1974 年的这一成果并没有引起当时科技界的重视。直到 1982 年,Parker 重新发现了这一方法,不久以后 Rumelhart、Hinton 和 Williams 也重新报导了这一方法 8,才使得该算法广为流传。Rumelhart 等人使用的神经元不同于以往

19、人们在 Madaline 网络中使用的神经元。早期的 Madaline 网络中使用的神经元是硬限幅( Signums)神经元,而 BP 算法中网络所使用的神经元是可微分的非线性神经元或 Sigmoid 函数神经元。Rumelhart 等人提出的 BP 算法(或如他们自己称作的广义 S 规则)克服了 Minskey 和 Papert(1969)所指出的感知机算法的局限性 9。 BP 算法似乎再次打开了 Minskey 和 Papert 早已关闭的研究大门。BP 算法很快在神经网络中占据了主导地位。一些学者转为企业家开发、销售廉价的BP 算法软件,而另一些人却平静地用 BP 算法预测股票价格,成百

20、上千的科技工作者在科技学会上报道 BP 算法的应用成果。一些企业投资者与大公司资助个人( PC)机及工作站上的 BP 算法加速板的开发。大众媒体也把 BP 算法喻为人们期待已久的机器智能研究的突破,它能从经验中学习,并预示着制造业的自动化;如不同语言间的翻译,能自我修复的机器人,等等。生理学家们在寻找人脑中枢神经系统中的 BP 算法,而理论家们猜想BP 算法能学会任意样本函数。BP 算法的普及也引起了人们激烈的批评,BP 算法的主要缺点(这些缺点是本质的,也是致命的)是常不收敛,或收敛于局部极小,即使收敛其速度也很慢,这使得 BP 算法只能解决小规模的问题。由于 BP 算法的这些缺点,人们对它

21、进行了改进研究。以往,人们的改进研究大都集中在变学习率,加惯性项,寻求良好的初始条件等方面。应该承认,这些改进研究有一定的效果,但它们都没有摆脱 BP 算法思想框架的束缚 梯度下降思想,正因为如此,它们不可能从根本上克服 BP 算法的本质缺点。20 世纪 90 年代以来,神经网络在向纵深发展的同时,也在与模糊技术、遗传算法、进化计算等智能方法相结合的方向上发展。虽 然 在 几 十 年 的 发 展 过 程 中 , 神 经 网 络 理 论 取 得 了 一 些 进 步 , 但 其 发 展 过 程 并 非 一帆 风 顺 , 曾 经 历 了 较 长 一 段 时 间 的 低 潮 期 , 直 到 20 世

22、纪 80 年 代 后 期 才 进 入 发 展 的 高 潮期 。 但 是 , 正 当 人 们 满 怀 热 情 地 应 用 神 经 网 络 的 已 有 成 果 去 解 自 己 的 实 际 工 作 中 的 问 题时 , 人 们 发 现 了 大 量 原 有 模 型 和 算 法 所 存 在 的 问 题 , 因 此 , 必 须 从 理 论 上 再 做 进 一 步 的研 究 。 本 书 正 是 在 这 样 的 背 景 下 对 多 层 前 馈 网 络 算 法 进 行 了 进 一 步 深 入 的 研 究 , 取 得 了重 要 的 成 果 。本书首次提出了一系列全新的理论和算法,并将其称为代数算法(详见第 3 章

23、)和样条函数神经网络算法(详见第 6 章) ,这些理论和算法摆脱了梯度下降思想的束缚,使复神经网络新理论与方法6杂的非线性映射问题转变为线性代数方程组的求解问题,因而从根本上克服了 BP 算法的本质缺点。具体内容请读者见书中的各章。参考文献1 McCulloch W and Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, V01.5, p115133, 19432 Hebb O. The Organization Behavio

24、r. New York:Wiley, 19493 Rosenblatt P. The perceptron:A probabilistic model for information storage and organization in the brain. Psychological Review, V01.65, p388408, 19584 B. Widrow and Hoff M E. Adaptive switching circuits. 1960 IRE WESCON Convention Record. New York:IRE Part 4, p96104, 19605 G

25、rossberg S. Adaptive pattern classification and universal recoding:I.Parallel development and coding of neural feature detectors. Biological Cybernetics, Vo1.23, p121134, 19766 Hopfield J J. Neural networks and physical systems with emergent collective computational abilities, Prceedings of the Nati

26、onal Academy of Sciences, V01. 79, p25542558, 19827 Werbos P J. Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph D Thesis, Harvard University, Cambridge, MA, 19748 Rumelhart D E, G E Hinton, R J Williams. Learning representations by back-propagetiong errors. Nature(London), 323, 533536, 19869 Minskey M L, Papert S. Perceptrons: An introduction to computational geometry. M I T Press, Cambridge, MA, 1969

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。