ImageVerifierCode 换一换
格式:DOC , 页数:16 ,大小:631KB ,
资源ID:3644710      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3644710.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高中数学函数解题技巧方法总结(高考)-学生版.doc)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

高中数学函数解题技巧方法总结(高考)-学生版.doc

1、1高中数学函数知识点总结一、. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备)二、. 求函数的定义域有哪些常见类型?例 : 函 数 的 定 义 域 是yx432lg函数定义域求法: 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于一;对数式的底数大于零且不等于一,真数大于零。 正切函数 xytankxR,2,且当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。三、. 如何求复合函数的定义域? 的 定,

2、 则 函 数,的 定 义 域 是如 : 函 数 )()(0)( xfxFabxf 义域是_。 复合函数定义域的求法:已知 的定义域为 ,求 的定义域,可由)(xfynm,)(gfy解出 x 的范围,即为 的定义域。nxgm)( g例 若函数 的定义域为 ,则 的定义域为 。)(fy2,1)(log2xf四、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数 y= 的值域x12、配方法配方法是求二次函数值域最基本的方法之一。例、求函数 y= -2x+5,x -1,2的值域。23、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也

3、可以用其他方法进行化简,不必拘泥在判别式上面2. 12.22222ba y型 : 直 接 用 不 等 式 性 质k+x型 ,先 化 简 , 再 用 均 值 不 等 式mn 例 : y1xc 型 通 常 用 判 别 式nxdy型 法 一 : 用 判 别 式法 二 : 用 换 元 法 , 把 分 母 替 换 掉x1( +) ( x1) 1 例 : y( x+) 24、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数 y= 值域。6543x5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函

4、数的单调性。例 求函数 y= , , 的值域。1xe2sin1y2sin1coy6、函数单调性法通常和导数结合,是最近高考考的较多的一个内容例求函数 y= (2x10)的值域25xlog31x7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数 y=x+ 的值域。1x38 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点 P(x.y)在圆 x2+y2=1 上,2,(2

5、),(,0, (1)的 取 值 范 围y-的 取 值 范 围 解 :()令 则 是 一 条 过 -的 直 线 . d为 圆 心 到 直 线 的 距 离 R为 半 径 )2)令 y-即 也 是 直 线 d xykxxRbyxR例求函数 y= + 的值域。2)8(2例求函数 y= + 的值域1362x542x9 、不等式法利用基本不等式 a+b2 ,a+b+c3 (a,b,c ) ,求函数的最值,其题型特征解abc3R析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例: 3()12x(3-)00) y=b O(a,b) O x x=a (k 为斜率,

6、b 为直线与 y 轴的交点)( ) 一 次 函 数 :10ykxb( ) 反 比 例 函 数 : 推 广 为 是 中 心 ,2 0ykxaOab()的双曲线。( ) 二 次 函 数 图 象 为 抛 物 线30242 2yaxbcabc顶 点 坐 标 为 , , 对 称 轴xa42开 口 方 向 : , 向 上 , 函 数aycb042mina2, 向 下 , x121212,|bxacxaAA根 的 关 系 : 9212112()()mn,()(,)(fxabcmnfxxhxh二 次 函 数 的 几 种 表 达 形 式 :一 般 式顶 点 式 , ( , ) 为 顶 点是 方 程 的 个 根

7、)函 数 经 过 点 (应用:“三个二次” (二次函数、二次方程、二次不等式)的关系二次方程abcxyabxcx2 1220, 时 , 两 根 、 为 二 次 函 数 的 图 象 与 轴的 两 个 交 点 , 也 是 二 次 不 等 式 解 集 的 端 点 值 。abc0()求闭区间m,n上的最值。2mx(),in()2a,4min,ax(),( 0nfffbmncbfffmna区 间 在 对 称 轴 左 边 ( ) 区 间 在 对 称 轴 右 边 ( )区 间 在 对 称 轴 边 ( )也 可 以 比 较 和 对 称 轴 的 关 系 , 距 离 越 远 , 值 越 大(只 讨 论 的 情 况

8、 )求区间定(动) ,对称轴动(定)的最值问题。一元二次方程根的分布问题。如 : 二 次 方 程 的 两 根 都 大 于axbckbakf2002() y (a0) O k x1 x2 x 一 根 大 于 , 一 根 小 于kkf()010y O x k 0mn22()0bmnaff在 区 间 ( , ) 内 有 根在 区 间 ( , ) 内 有 1根( ) 指 数 函 数 : ,40yax( ) 对 数 函 数 ,51aalog由图象记性质! (注意底数的限定!) y y=ax(1) (01) 1 O 1 x (0a1) ( ) “对 勾 函 数 ”6yxk利用它的单调性求最值与利用均值不等式求最值的区别是什么?(均值不等式一定要注意等号成立的条件)15. 你在基本运算上常出现错误吗?指 数 运 算 : ,aap0110()amnmn,log()logl0aaaMNNM对 数 运 算 : ,l oga na, 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。