ImageVerifierCode 换一换
格式:PPT , 页数:31 ,大小:992.50KB ,
资源ID:3708085      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3708085.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(分配问题与匈牙利法.PPT)为本站会员(天***)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

分配问题与匈牙利法.PPT

1、分配问题与匈牙利法,指派问题的数学模型的标准形式:,设n 个人被分配去做n 件工作,规定每个人只做一件工作,每件工作只有一个人去做。已知第i个人去做第j 件工作的效率( 时间或费用)为Cij(i=1.2n;j=1.2n)并假设Cij 0。问应如何分配才能使总效率( 时间或费用)最高?,设决策变量,分配问题与匈牙利法,指派问题的数学模型为:,分配问题与匈牙利法,克尼格定理 :如果从分配问题效率矩阵aij的每一行元素中分别减去(或加上)一个常数ui,从每一列中分别减去(或加上)一个常数vj,得到一个新的效率矩阵bij,则以bij为效率矩阵的分配问题与以aij为效率矩阵的分配问题具有相同的最优解。,

2、分配问题与匈牙利法,指派问题的求解步骤:,1) 变换指派问题的系数矩阵(cij)为(bij),使在(bij)的各行各列中都出现0元素,即 从(cij)的每行元素都减去该行的最小元素; 再从所得新系数矩阵的每列元素中减去该列的最小元素。,2) 进行试指派,以寻求最优解。 在(bij)中找尽可能多的独立0元素,若能找出n个独立0元素,就以这n个独立0元素对应解矩阵(xij)中的元素为1,其余为0,这就得到最优解。,分配问题与匈牙利法,找独立0元素,常用的步骤为:,从只有一个0元素的行开始,给该行中的0元素加圈,记作 。然后划去 所在列的其它0元素,记作 ;这表示该列所代表的任务已指派完,不必再考虑

3、别人了。依次进行到最后一行。 从只有一个0元素的列开始(画的不计在内),给该列中的0元素加圈,记作;然后划去 所在行的0元素,记作 ,表示此人已有任务,不再为其指派其他任务了。依次进行到最后一列。 若仍有没有划圈的0元素,且同行(列)的0元素至少有两个,比较这行各0元素所在列中0元素的数目,选择0元素少这个0元素加圈(表示选择性多的要“礼让”选择性少的)。然后划掉同行同列的其它0元素。可反复进行,直到所有0元素都已圈出和划掉为止。,分配问题与匈牙利法,若 元素的数目m 等于矩阵的阶数n(即:mn),那么这指派问题的最优解已得到。若m n, 则转入下一步。,3) 用最少的直线通过所有0元素。其方

4、法:,对没有的行打“”; 对已打“” 的行中所有含元素的列打“” ; 再对打有“”的列中含 元素的行打“” ; 重复、直到得不出新的打号的行、列为止; 对没有打号的行画横线,有打号的列画纵线,这就得到覆盖所有0元素的最少直线数 l 。,注:l 应等于m,若不相等,说明试指派过程有误,回到第2步,另行试指派;若 lm n,表示还不能确定最优指派方案,须再变换当前的系数矩阵,以找到n个独立的0元素,为此转第4步。,分配问题与匈牙利法,4) 变换矩阵(bij)以增加0元素在没有被直线通过的所有元素中找出最小值,没有被直线通过的所有元素减去这个最小元素;直线交点处的元素加上这个最小值。新系数矩阵的最优

5、解和原问题仍相同。转回第2步。,分配问题与匈牙利法,例4.6 有一份中文说明书,需译成英、日、德、俄四种文字,分别记作A、B、C、D。现有甲、乙、丙、丁四人,他们将中文说明书译成不同语种的说明书所需时间如下表所示,问如何分派任务,可使总时间最少?,分配问题与匈牙利法,解:1)变换系数矩阵,增加0元素。,5,2)试指派(找独立0元素),找到 3 个独立零元素 但 m = 3 n = 4,分配问题与匈牙利法,3)作最少的直线覆盖所有0元素,独立零元素的个数m等于最少直线数l,即lm=3n=4;,4)没有被直线通过的元素中选择最小值为1,变换系数矩阵,将没有被直线通过的所有元素减去这个最小元素;直线

6、交点处的元素加上这个最小值。得到新的矩阵,重复2)步进行试指派,分配问题与匈牙利法,试指派,得到4个独立零元素, 所以最优解矩阵为:,即完成4个任务的总时间最少为:241+8=15,分配问题与匈牙利法,例4.7 已知四人分别完成四项工作所需时间如下表,求最优分配方案。,分配问题与匈牙利法,解:1)变换系数矩阵,增加0元素。,2)试指派(找独立0元素),独立0元素的个数为4 , 指派问题的最优指派方案即为甲负责D工作,乙负责B工作,丙负责A工作,丁负责C工作。这样安排能使总的工作时间最少,为4491128。,分配问题与匈牙利法,例4.8 已知五人分别完成五项工作耗费如下表,求最优分配方案。,分配

7、问题与匈牙利法,-1,-2,解:1)变换系数矩阵,增加0元素。,分配问题与匈牙利法,2)试指派(找独立0元素),独立0元素的个数l45,故画直线调整矩阵。,分配问题与匈牙利法,选择直线外的最小元素为1;直线外元素减1,直线交点元素加1,其他保持不变。,分配问题与匈牙利法,l =m=4 n=5,选择直线外最小元素为1,直线外元素减1,直线交点元素加1,其他保持不变,得到新的系数矩阵。,分配问题与匈牙利法,总费用为=5+7+6+6+4=28,注:此问题有多个最优解,分配问题与匈牙利法,总费用为=7+9+4+3+5=28,分配问题与匈牙利法,总费用为=8+9+4+3+4=28,分配问题与匈牙利法,课

8、堂练习:用匈牙利法求解下列指派问题。,练习1:,练习2:,分配问题与匈牙利法,48,21,答案:,分配问题与匈牙利法,非标准型的指派问题:,匈牙利法的条件是:模型求最小值、效率cij0。当遇到各种非标准形式的指派问题时,处理方法是先将其转化为标准形式,然后用匈牙利法来求解。,分配问题与匈牙利法,1. 最大化指派问题,处理方法:设m为最大化指派问题系数矩阵C中最大元素。令矩阵B(m-cij)nn则以B为系数矩阵的最小化指派问题和原问题有相同的最优解。,例4.9 某人事部门拟招聘4人任职4项工作,对他们综合考评的 得分如下表(满分100分),如何安排工作使总分最多。,分配问题与匈牙利法,解: M9

9、5,令,用匈牙利法求解C,最优解为:,即甲安排做第二项工作、乙做第三项、丙做第四项、丁做第三项, 最高总分Z92959080357,分配问题与匈牙利法,2. 不平衡的指派问题,当人数m大于工作数n时,加上mn项虚拟工作,例如:,当人数m小于工作数n时,加上nm个人,例如,分配问题与匈牙利法,3. 一个人可做几件事的指派问题,若某人可做几件事,则将该人化作相同的几个“人”来接受指派,且费用系数取值相同。,例如:丙可以同时任职A和C工作,求最优指派方案。,分配问题与匈牙利法,4. 某事一定不能由某人做的指派问题,将该人做此事的效率系数取做足够大的数,可用M表示。,例4.10 分配甲、乙、丙、丁四个人去完成A、B、C、D、E五项任务。每个人完成各项任务的时间如表所示。由于任务数多于人数,考虑任务E必须完成,其他4项中可任选3项完成。试确定最优分配方案,使完成任务的总时间最少。,分配问题与匈牙利法,解: 1) 这是不平衡的指派问题,首先转换为标准型,再用匈牙利法求解。2) 由于任务数多于人数,所以假定一名虚拟人,设为戊。因为工作E必须完成,故设戊完成E的时间为M(M为非常大的数),其余效率系数为0,则标准型的效率矩阵表示为:,分配问题与匈牙利法,用匈牙利法求出最优指派方案为:,即甲B,乙D,丙E,丁A, 任务C放弃。最少时间为105。,

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。