ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:618.50KB ,
资源ID:3764997      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3764997.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一元二次方程根的分布.doc)为本站会员(hw****26)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

一元二次方程根的分布.doc

1、1方程根的分布专题讲义一知识要点二次方程 的根从几何意义上来说就是抛物线 与 轴交点的02cbxa cbxay2横坐标,所以研究方程 的实根的情况,可从 的图象上进行研2究若在 内研究方程 的实根情况,只需考察函数 与),(0cbxa 2轴交点个数及交点横坐标的符号,根据判别式以及韦达定理,由 的系数可判x cbxay断出 的符号,从而判断出实根的情况21,x若在区间 内研究二次方程 ,则需由二次函数图象与区间关系来确)(nm2cx定1二次方程有且只有一个实根属于 的充要条件),(nm若 其中一个是方程的根,则由韦达定理可求出另一根,若 不是二次方程 的根,二次函数 的图象有以下几种n02cb

2、xa cbxaxf2)(可能:(1) (2)21,0xma nm21,0(3) (4)21,0xnma nxma21,0由图象可以看出, 在 处的值 与在 处的值 符号总是相反,即)(xfm)(fnx)(f;反之,若 , 的图象的相对位置只能是图中四种情况之0)(nfm0)(nf一所以得出结论:若 都不是方程 的根,记 ,则 有且,2acba cbxaf2)( 0)(xf只有一个实根属于 的充要条件是 ),(n)(f2二次方程两个根都属于 的充要条件),(nyOn1x2x yO1x2xxyOn1x2 xyOn1x22方程 的两个实根都属于 ,则二次函数 的)0(2acbax ),(nmcbxa

3、xf2)(图象与 轴有两个交点或相切于点,且两个交点或切点的横坐标都大于 小于 ,它的图象有mn以下几种情形:(1) (2)nxm21,0 a21,0(3) (4)nxma21,0 nxma21,0由此可得出结论:方程 的两个实根都属于区间 的充要条件是:)0(2acbxa ),(nmnabmf2)(4这里 cxxf)(3二次方程 的两个实根分别在区间 的两侧(一根小于 ,另一根大0),(nmm于 )的充要条件是:n0)(af这里 cbxx24二次方程 的两个实根都在 的右侧的充要条件是:0),(nnabf20)(2yO1x2 yO21xxyOn1x2 xyO21x3二次方程 的两个实根都在

4、的左侧(两根都小于 )的充要条件是:02cbxa),(nmmmabf2)(4这里 cxxf)(二例题选讲例设关于 的方程 R) ,bx(0241(1)若方程有实数解,求实数 b 的取值范围;(2)当方程有实数解时,讨论方程实根的个数,并求出方程的解。例已知二次函数 f(x)=ax2+bx+c(a0).若方程 f(x)=x 无实根,求证:方程 ff(x)=x 也无实根例设 , ,若 ,求实数 的取值范围,)A4BxBAa变式:已知方程 x2 + (3m-1)x + (3m-2)=0 的两个根都属于( -3, 3),且其中至少有一个根小于 1,求 m 的取值范围例已知方程 有两个负根,求 的取值范

5、围)0)32)1(4R m例求实数 的范围,使关于 的方程 0621(xx()有两个实根,且一个比大,一个比小()有两个实根 ,且满足 , 4()至少有一个正根例 已知关于 x 的二次方程 x2+2mx+2m+1=0.(1) 若方程有两根,其中一根在区间( 1,0)内,另一根在区间(1,2) 内,求 m 的范围.(2) 若方程两根均在区间(0, 1)内,求 m 的范围.变式:已知方程 2x2 2(2a-1)x + a+2=0 的两个根在-3 与 3 之间,求 a 的取值范围例已知二次方程 的两个根都小于 1,求 的取值范围02)(m变式:如果二次函数 y=mx2+(m3)x+1 的图象与 x

6、轴的交点至少有一个在原点的右侧,试求 m的取值范围.例已知 是实数,函数 ,如果函数 在区间 上有零2()fa()yfx1,点,求 的取值范围a二次方程实根分布的一些方法除了直接用于判别二次方程根的情况,在其它的一些场合下也可以适当运用下面再举两个例子:例求函数 y = (10,求证 头htp:/w.xjkygcom126t126.hp:/wxjkygcormqp12(1) pf( )0(1)当 m0 时,二次函数图象与 x 轴有两个交点且分别在 y 轴两侧,符合题意.(2)当 m0 时,则 解得 0m 13综上所述,m 的取值范围是m|m 1 且 m0.例解析 1:函数 在区间-1,1 上有

7、零点,即方程 =0 在-1,1()yfx 2()3fxaxa8上有解,a=0 时,不符合题意,所以 a0,方程 f(x)=0 在-1,1 上有解 或(1)0f或 或 或 a1.(1)0483).afa15a3725a372所以实数 a 的取值范围是 或 a1.解析 2:a=0 时,不符合题意,所以 a0,又 =0 在 -1,1上有解, 在-1,1 上有解()3fxxa2(1)3xax在-1,1上有解,问题转化为求函数 -1,1上的值域;设 t=3-2x,x -1ay1,1,则 ,t1,5, ,2x21(3)7(6)tyt设 , 时, ,此函数 g(t)单调递减, 时,277().()gttt,

8、t0g(7,5t0,此函数 g(t)单调递增,y 的取值范围是 , =0 在-1,1 73,12()3fxaxa上有解 或 。1a73,1a32例解:原函数即为 y (x2-3x+2)=x+1,yx2-(3y+1)x+2y-1=0, 由题意,关于 的方程在(1,2)上有实根易知 y0 ) 2故 m 的取值范围为 (-, 0)(0, 3-2 .2巩固练习1解:易知 x1 = -1 是方程的一个根,则另一根为 x2 = ,所以原方程有且仅有一个实m-43m-1根属于( -1, 1)当且仅当 -1 , m 的取值范围为 (-m-43m-1 32 54,- )( , +).32 542解:令 ,当 时

9、, xt2),()2,0(t由于 是一一映射的函数,所以 在 上有两个值,则 在 上有两个对应的x1t)2,0(9值因而方程 在(0,2)上有两个不等实根,其充要条件为)12(mtt)4(2103)9( )(14m由(1)得: ,4由(2)得: ,由(3)得: 或 ,092由(4)得: 16m,即 的取值范围为 492)41,(3解:设 f(x) = ,由于 f(x)是二次函数,所以 2m+1 0,即 m 2)mx - .12f(x) =0 在(1,2)上有且仅有一个实根当且仅当 f(1)f(2)0, 所以,pf ( )01(2)由题意,得 f(0)=r, f(1)=p+q+r,当 p0 时,由(1)知 f( )0,1若 r0,则 f(0)0,又 f( )0,所以 f(x)=0 在(0 , )内有解;1若 r0,则 f(1)=p+q+r=p+(m+1)( )+r= 0,p2mrp2又 f( )0, 所以 f(x)=0 在( ,1)内有解 头htp:/w.xjkygcom126t:/.j1m当 p 0 时同理可证 头htp:/w.xjkygcom126t:/.j故方程 f(x)=0 在 (0,1)内恒有解

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。