ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:26.95KB ,
资源ID:3770695      下载积分:20 文钱
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,省得不是一点点
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.wenke99.com/d-3770695.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: QQ登录   微博登录 

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(蛋白质冻干.docx)为本站会员(11****ws)主动上传,文客久久仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知文客久久(发送邮件至hr@wenke99.com或直接QQ联系客服),我们立即给予删除!

蛋白质冻干.docx

1、蛋白质药品冷冻干燥技术研究进展1.引言由于冻干药品呈多孔状、能长时间稳定贮存、并易重新复水而恢复活性,因此冷冻干燥技术广泛应用于制备固体蛋白质药物、口服速溶药物及药物包埋剂脂质体等药品。从国家药品监督管理局数据库得知,目前国内已有注射用重组人粒细胞巨噬细胞集落刺激因子、注射用重组人干扰素 2b、冻干鼠表皮生长因子、外用冻干重组人表皮生长因子、注射用重组链激酶、注射用重组人白介素-2、注射用重组人生长激素、注射用 A 群链球菌、注射用重组人干扰素 2b、冻干人凝血因子 V、冻干人纤维蛋白原、间苯三酚口服冻干片等冻干药品获准上市。截止 2000 年 2 月,美国 FDA 已批准的生物技术药共计 7

2、6 个。冷冻干燥技术最早于 1813 年由英国人 Wollaston 发明。1909 年 Shsckell 试验用该方法对抗毒素、菌种、狂犬病毒及其它生物制品进行冻干保存,取得了较好效果。在第二次世界大战中,对血液制品的大量需求大大刺激了冷冻干燥技术的发展,从此该技术进入了工业应用阶段。此后,制冷和真空设备的飞速发展为快速发展冷冻干燥技术提供了强有力的物质条件。进入上个世纪的八九十年代,科学技术的迅猛发展和人民群众对健康保障的需求为药品冷冻干燥技术的飞速发展提供了强大的动力,在药品冻干损伤和保护机理、药品冻干工艺、药品冷冻干燥机等方面取得了巨大的成绩。但药品冷冻干燥技术是一门边缘学科,需要生物

3、学、药学、制冷、真空和控制等知识的交叉和综合,因此仍存在亟待解决的问题。2.药品冷冻干燥原理及特点药品冷冻干燥是指把药品溶液在低温下冻结,然后在真空条件下升华干燥,除去冰晶,待升华结束后再进行解吸干燥,除去部分结合水的干燥方法。该过程主要可分为:药品准备、预冻、一次干燥(升华干燥)和二次干燥( 解吸干燥) 、密封保存等五个步骤。药品按上述方法冻干后,可在室温下避光长期贮存,需要使用时,加蒸馏水或生理盐水制成悬浮液,即可恢复到冻干前的状态。与其它干燥方法相比,药品冷冻干燥法具有非常突出的优点和特点:a) 药液在冻结前分装,剂量准确;b) 在低温下干燥,能使被干燥药品中的热敏物质保留下来;c)在低

4、压下干燥,被干燥药品不易氧化变质,同时能因缺氧而灭菌或抑制某些细菌的活力;d) 冻结时被干燥药品可形成“骨架“ ,干燥后能保持原形,形成多孔结构而且颜色基本不变;e) 复水性好,冻干药品可迅速吸水还原成冻干前的状态;f) 脱水彻底,适合长途运输和长期保存。虽然药品冷冻干燥具有上述优点,但是干燥速率低、干燥时间长、干燥过程能耗高和干燥设备投资大等仍是该技术的突出缺点。3.药品冻干损伤和保护机理药品冷冻干燥是一个多步骤过程,会产生多种应力使药品变性,如低温应力、冻结应力和干燥应力。其中冻结应力又可分为枝状冰晶的形成,离子浓度的增加,PH 值的改变和相分离等情况。因此,为了保护药品的活性,通常在药品

5、配方中添加活性物质的保护剂。它需要具备四个特性:玻璃化转变温度高、吸水性差、结晶率低和不含还原基。常用的保护剂有如下几类物质:a) 糖类/多元醇:蔗糖、海藻糖、甘露醇、乳糖、葡萄糖、麦芽糖等;b) 聚合物:HES 、PVP 、PEG、葡聚糖、白蛋白等;c)无水溶剂:乙烯乙二醇、甘油 、DMSO、DMF 等;d) 表面活性剂:Tween 80 等;e) 氨基酸:L-丝氨酸、谷氨酸钠、丙氨酸、甘氨酸、肌氨酸等;f) 盐和胺:磷酸盐、醋酸盐、柠檬酸盐等;由于冷冻干燥过程存在多种应力损伤,因此保护剂保护药品活性的机理也是不同的,可以分为低温保护和冻干保护。对于低温保护,目前被广为接受的液体状态下蛋白质

6、稳定的机理之一是优先作用原理。优先作用是指蛋白质优先与水或水溶液中的保护剂作用。在有起稳定作用的保护剂存在的条件下,蛋白质优先与水作用(优先水合) ,而保护剂优先被排斥在蛋白质区域外(优先排斥) 。在这种情况下,蛋白质表面就比其内部有较多的水分子和较少的保护剂分子。优先作用原理同样适用于冷冻-融解过程。蛋白质保护剂,在溶液中被从蛋白质表面排斥,在冻结过程中能够稳定蛋白质。但是优先作用机理不能完全解释用聚合物或蛋白质自身在高浓度时保护蛋白质的现象。在冻干过程中,由于蛋白质的水合层被除去,优先作用机理不再适用。对于冻干保护机理,仍在研究探讨之中,目前主要有两种:a) 水替代假说。许多研究者认为由于

7、蛋白质分子中存在大量氢键,结合水通过氢键与蛋白质分子联结。当蛋白质在冷冻干燥过程中失去水分后,保护剂的羟基能替代蛋白质表面的水的羟基,使蛋白质表面形成一层假定的水化膜,这样可保护氢键的联结位置不直接暴露在周围环境中,稳定蛋白质的高级结构,防止蛋白质因冻干而变性,使其即使在低温冷冻和干燥失水的情况下,仍保持蛋白质结构与功能的完整性。b) 玻璃态假说。研究者认为在含保护剂溶液的干燥过程中,当浓度足够大且保护剂的结晶不会发生时,保护剂-水混合物就会玻璃化。研究发现在玻璃态下,物质兼有固体和流体的行为,粘度极高,不容易形成结晶,且分子扩散系数很低,因而具有粘性的保护剂包围在蛋白质分子的周围,形成一种在

8、结构上与玻璃状的冰相似的碳水化合物玻璃体,使大分子物质的链锻运动受阻,阻止蛋白质的伸展和沉淀,维持蛋白质分子三维结构的稳定,从而起到保护作用。目前大部分学者赞同“水替代假说“ ,因为可以通过实验检测到蛋白质和保护剂之间的氢键,为理论提供证据。事实上,无论是“水替代假说“ 还是“玻璃态假说“ ,它们的基础都是基于药液实现了部分或全部玻璃化冻结。4 冻干工艺及优化 由于药品冷冻干燥过程会产生多种应力,对冻干药品的药性有很大的影响,因此对药品冷冻干燥过程进行合理设计,对于减少冻干损伤和提高冻干药品的质量有重大的意义。4.1 冻结研究冷冻干燥过程中的冻结过程非常重要,因为在冻结中形成的冰晶形态和大小以

9、及玻璃化程度不仅影响后继的干燥速率,而且影响冻干药品的质量。因此在冻结过程中必须考虑配方、冻结速率、冻结方式、以及是否退火等问题。4.1.1 配方的影响配方中的固体含量会影响冻结和干燥过程。如果固体含量少于 2%,那么冻干药品结构的机械性能就会不稳定。尤其在干燥过程中,药品微粒不能粘在基质上,逸出的水蒸气会把这些微粒带到小瓶的塞子上,有时甚至会带到真空室当中。此外,为了获得均匀一致、表面光滑、稳定的蛋白质药品,配方中必须含有填充剂、赋形剂、稳定剂等保护剂,这些保护剂对实现药品的玻璃化冻结有重大的影响。很多糖类或多元醇经常被用于溶液冻融和冻干过程中非特定蛋白质的稳定剂,它们既是有效的低温保护剂又

10、是很好的冻干保护剂,它们对冻结的影响取决于种类和浓度。文献1623对不同的保护剂进行了详尽的研究,探讨了它们的冻结特性。文献4还研究了其它保护剂的冻结特性。但是蛋白质种类很多,而且物理化学性质各异,因此不同的蛋白质需要不同的保护剂配方,因此它们的冻结特性就不同,一般需要实验。4.1.2 冻结方式冻结方式不同,产生的冰晶的形态和大小就不同,而且会影响后继的干燥速率和冻干药品质量。根据冻结机理,可以把冻结分为全域过冷结晶和定向结晶两类。全域过冷结晶是指全部药液处于相同或相近的过冷度下进行冻结的方式。在全域过冷结晶中,冻结速率和冰晶成核温度是重要的参数。全域过冷结晶按冻结速率的快慢可分为慢速冻结和快

11、速冻结。快速冻结的冰晶细小,而且没有冻结浓缩现象,但是存在不完全冻结现象。相反,慢速冷却产生较大的冰晶,并且存在冻结浓缩的现象。Thomas W Patapoff 等人发现如果把药品直接浸入液氮或干冰- 乙醇溶液槽中(快速冻结) ,那么晶核首先在瓶壁产生,然后冰晶向中心扩散,再垂直向上扩散。由于长成的冰晶细小,而且有水平方向的结构,导致干燥阶段的传质阻力很大,升华速率降低。实验证明,快速冻结导致升华速率低,解吸速率快,慢速冻结导致升华速率快,解吸速率慢。James A Searles 等人认为冰晶成核温度是全域过冷结晶的重要因素,因为它是升华速率的主要决定因素。他们在研究中发现,冰晶成核温度从

12、本质上来说是随机的、不稳定的,不容易控制,但是受溶液中的微粒含量和是否存在冰晶成核体等影响因素。正是冰晶成核温度的随机性导致升华干燥速率的不均匀性以及与形态相关的参数,如冻干药品表面积和解吸干燥速率。定向结晶是指一小部分药液处于过冷状态下进行冻结的方式。Thomas W Patapoff 介绍了一种垂直冻结方式。溶液用湿冰冷却,在瓶子底部用干冰冷却,形成晶核,然后放到-50的搁板上冻结。用这种方式冻结的样品的冰晶在垂直方向呈现烟囱状,在药品表面没有冻结浓缩层,而且整个药品的结构均一性很好,因此在干燥时的传质阻力很小,加快了冻干速率。Martin Kramer 等人采用了另外一种方式实现了定向冻

13、结。他们在真空室压力为 0.1kPa,搁板温度为+10的条件下,让溶液开始表面冻结,形成 13mm 左右的冰晶薄层。然后解除真空,降低搁板温度到结晶温度以下进行冻结。在这种条件下长成的冰晶粗大,也呈烟囱状。同时在干燥阶段发现,升华干燥时间比采用一般冻结的时间节省了 20%。分析冻干药品时还发现,对甘露醇,采用这种方式冻结的冻干品的剩余含水量比采用一般冻结的要多;但对蔗糖和甘氨酸,两者差别不大。H Schoof 等人在冻干胶原质时也采用了定向结晶的方式。冻结方式不同,产生的冰晶形态和大小就不同,后继的干燥速率也不同。实验证明,采用定向结晶方式的冻结药品的干燥速率比全域过冷结晶的快。但是无论采用哪

14、种冻结方式,药品溶液必须部分或全部实现玻璃化冻结,以保护药品药性。4.1.3 退火退火是指把冻结药品温度升到共熔温度以下,保温一段时间,然后再降低温度到冻结温度的过程。在升华干燥之前增加退火步骤,至少有三个原因:a) 强化结晶。在冻结过程特别是快速冻结过程中,配方中结晶成分往往来不及完全结晶。但是如果该成分能为冻干药品结构提供必要的支撑或者蛋白质在该成分完全结晶后会更稳定,那么就有必要完全结晶。此外,冻结浓缩液中也会有一部分水来不及析出,使其达不到最大浓缩状态。实验证明,当退火的温度高于配方的最大浓缩液玻璃化转变温度 Tg时,会促进再结晶的形成使结晶成分和未冻结水结晶完全。b) 提高非晶相的最

15、大浓缩液玻璃化转变温度 Tg。从非晶相中除去 Tg较低的结晶成分,能够提高非晶相的 Tg。Barry J Aldous 在研究非晶态碳水化合物的水合物结晶规律时发现,经过退火之后的海藻糖干燥溶液的玻璃化转变温度由 31上升到 79,大大提高了稳定作用。c)改变冰晶形态和大小分布,提高干燥效率。James A Searles 等人研究认为不同的成核温度产生不同的冰晶形态和粒径大小,继而导致升华干燥的速率的不均匀。但是一个过程中的干燥速率是由最慢的干燥药品确定的,因此不均匀的干燥速率会影响药品的质量和生产的经济性。研究证实退火过程中的相行为和重结晶可以减小由于成核温度差异造成的冰晶尺寸差异及干燥速

16、率的不均匀性,提高干燥效率和药品均匀性。为了达到退火目的,在退火操作中,必须考虑加热速率、退火温度、退火时间等参数。但是目前由于实验手段不够先进和理论知识比较缺乏,退火机理尚有疑问,退火参数的选取仍然没有依据。4.2 干燥药品冷冻干燥的干燥过程可以分为两个阶段,一次干燥和二次干燥。在一次干燥阶段除去自由水,在二次干燥阶段除去部分结合水。干燥过程占据了药品冷冻干燥过程的大部分能耗,因此采取有效措施提高干燥速率显得非常有意义。目前,大都采取控制搁板和药品温度、冷阱温度和真空度的做法来实现干燥速率的提高。药品温度的控制。包括冻结层和已干层的温度控制。控制冻结层温度的原则是在保证冻结层不发生熔化(在低

17、共熔点以下)的前提下,温度越高越好。控制已干层温度的原则是在不使物料变性或已干层结构崩塌的前提下、尽量采用较高的干燥温度。而搁板温度的控制是以满足药品温度控制为标准。冷阱温度。冻干过程中水升华的驱动力是药品和冷阱间的温差。由于药品温度受加热方式的限制,同时不能高于共熔温度,因此冷阱温度越低越好。为了提高经济性,在升华干燥过程中应至少低于药品温度 20;在解吸干燥过程中,对于那些要求很低残余水分的配方,冷阱温度要求更低。真空度。一般认为,压力对冻干过程有正反两方面的影响:a) 在药品共熔点温度和崩塌温度以下,升华界面温度越高,升华水汽越多,所需热量越大。压力越高,相应提高了已干层导热系数,表面对

18、流作用也越大,因此升华水汽也越快,即冻干速率越大。b) 升华界面通过已干层到外部的水汽逸出速度与界面和表面之间的压力差,即界面温度所对应的饱和压力与干燥室的真空度之差相关。这个压差大,有助于水汽逸出。这个压差越小,逸出越慢,干燥速率也越小。如果冷冻干燥是传热控制过程,则干燥速率随着干燥室压力升高而提高;如果冷冻干燥是传质控制过程,干燥速率随着干燥室压力升高而降低。经验证明升华阶段的真空度在 1030Pa 时,既有利于热量的传递,又利于升华的进行。若压强过低,则对传热不利,药品不易获得热量,升华速率反而降低,而且对设备的要求也更高,增加了成本。而当压强过高时,药品内冰的升华速度减慢,药品吸收热量

19、将减少,于是药品自身的温度上升,当高于共熔点温度时,药品将发生熔化导致冻干失败。根据真空度对冻干速率的影响,文献40采用了循环压力法,得到了不错的效果。药品冷冻干燥过程是一个连续的操作,不同的药品配方,有不同的冻结特性,而且冻干曲线也不同,因此应在基础研究的基础上广泛开展个体研究,优化冻干曲线,提高干燥速率,降低能耗。5 药品冷冻干燥机药品冷冻干燥机的分类方法很多,按其搁板面积可分为大、中、小三种类型,通常冻干面积小于 1.5m2 为小型,介于 1.5m2 至 50m2 之间为中型,大于 50m2 为大型;按其目的和用途可分为实验型冻干机、中试型冻干机和工业生产型冻干机。药品冷冻干燥机主要由干

20、燥箱、真空系统、制冷系统、冷阱系统、加热系统、加盖系统、自动控制系统等几大部分组成。此外,大中型冷冻干燥机还常有蒸气灭菌系统(SIP)、在位清洗系统(CIP)。制冷系统分别为冷冻干燥箱和冷阱系统提供冷源。目前采用的单级制冷压缩循环的板层制冷温度约在-35-40之间,冷阱温度在-50左右;双级制冷压缩循环的板层制冷温度在-45 -50之间,冷阱温度在-65左右;复叠式制冷循环的板层制冷温度在-55 -60 之间,冷阱温度在-75 左右。冷冻干燥机的控制主要是对制冷机、真空机组、加热功率的起停及温度的控制,对真空度、温度的测定、监控、以及自动保护、报警装置等。采用全自动控制或微电脑控制的冻干机都能

21、显示各主要部件的工作状态,显示干燥箱内搁板和药品的温度、真空度、捕水器温度,都能进行参数设定、修改和实时显示。药品冷冻干燥机必须执行 GMP 规范标准,实现高度无菌化、无尘化,达到高度可靠、安全、维护简便。为此药品冷冻干燥机往往采用蒸气灭菌系统(SIP)以保证灭菌彻底、无死角。同时辅以在位清洗系统(CIP),对干燥室、冷凝器、主阀及管道进行就地清洗预设排液坡度,保证无液体滞留。同时具有应对停电、停水、误操作的保护措施,一旦出现故障,可以对药品实行保护;实现冻干机操作运行的计算机控制,具有停电停水三对策系统,可以多路联锁自动报警。由于药品冷冻干燥机必须执行 GMP 规范标准,因此今后药品冷冻干燥

22、机的研究仍将朝着无菌化和高度可靠性的方向进行,如自动进料方式、真空控制方式等的研究。随着生物技术的高速发展,多肽蛋白质类药物不断涌现,可应用于临床的多肽、蛋白酶、激素、疫苗、细胞生长因子及单克隆抗体等成为开发重点。为防止药品变性,目前广泛采用冷冻干燥法制备称固态药品。经过几十年的发展,药品冷冻干燥技术虽然有了很大的进展,但是仍存在不少问题,亟需解决。在冷冻干燥过程中会产生多种冻结和干燥应力,使药品发生不同程度的变性,而且冻干法本身也存在干燥速率低、干燥时间长、干燥过程能耗高和干燥设备投资大等缺点。因此为了提高药品的稳定性和经济性,必须对药品在冻干过程中的损伤和保护机理进行进一步的研究,同时利用

23、先进的制冷和真空设备及控制手段开发价格低、性能好的冷冻干燥机,继续完善低温低压下的传热传质理论,优化冻干工艺。 吨的中等规模的冻干车间。冻干曲线程序的制定生物制品经冷冻干燥后具有一定的物理形态,如均匀的颜色、合格的残余水份含量、良好的溶解性、高的存活率或较长的保存期等。因此,不仅要对冻干过程和冻干后的密封保存进行控制,更重要的是对冷冻干燥过程的每一阶段的各参数进行全面的控制,才能得到优质的产品。冻干曲线和时序就是进行冷冻干燥过程控制的基本依据。冻干曲线和时序不仅是手工操作冻干机的依据,也是自动控制冻干机操作的依据。例如,利用凸轮法和滚筒法进行冻干机的自动控制时,凸轮和滚筒的刻划依据就是冻干曲线

24、和时序,在用微处理机对冻干机进行控制时,操作程序的编制依据也是冻干曲线和时序,按照微机的一定要求把冻干曲线和时序用操作键盘输入微机的贮存器内。冻干曲线是冻干箱板层温度与时间之间的关系曲线。一般以温度为纵坐标,时间为横坐标。它反映了在冻干过程中,不同时间板层温度的变化情况。冻干时序是在冻干过程中不同时间,各种设备的启闭运行情况。制定冻干曲线以板层为依据是因为产品温度是受板层温度支配的。控制了板层温度也就控制了产品温度。制定冻干曲线要考虑下列因素:产品的品种:产品不同则共熔点亦不同,共熔点低的产品要求预冻的温度低;加热时板层的温度亦相应要低些。有些产品受冷冻的影响较大,有些产品则影响较小;一般细菌

25、性的产品受冷冻的影响较大,病毒性的产品受冷冻的影响较小。要根据试验找出一个产品的最优冷冻速率,以获得高质量的产品和较短的冷冻干燥时间。另外产品不同,对残余水份的要求也不同。为了长期保存产品,有些产品要求残余水份含量低些。有些则要求高些。残余水份含量要求低的产品,冻干时间需长些。残余水份含量要求高的产品,冻干时间可缩短。装量的多少也影响着冻干曲线的制定。一个是总装量的多少,一个是每一容器内产品装量的多少。装量多的冻干时间也长。容器的品种也是需要考虑的因素,底部平整和较清洁的瓶子传热较好。底部不平或玻璃厚的瓶子传热较差,后者显然冻干时间较长。冻干机性能的优劣直接关系到冻干曲线的制定,冻干机有各种不

26、同的型号,因此它们的性能也各不相同。有些机器的性能好,例如板层之间,每板层的各部分之间温差小;冷凝器的温度低,冰负荷能力大;冻干箱与冷凝器之间的水蒸汽流动阻力小;真空泵抽速快,真空度好而稳定。有些机器则差一些。因此尽管是同一产品,当用不同型号的冻干机进行冻干时,曲线也是不一样的,照搬其它型号机器的冻干曲线不一定能冻出好的产品来。制定冻干曲线和时序时要确定下列数据:1.预冻速度预冻速度大部分机器不能进行控制,因此只能以预冻温度和装箱时间来决定预冻的速率,要求预冻的速率快,则冻干箱先降至降低的温度,然后才让产品进箱;要求预冻的速率慢,则产品进箱之后再让冻干箱降温。2.预冻的最低温度这个温度取决于产

27、品的共熔点温度,预冻最低温度应低于该产品的共熔点温度的 57。3.预冻的时间产品装量多,使用的容器底厚而不平整,不是把产品直接放在冻干箱板层上冻干,冻干箱冷冻机能力差,每一板层之间以及每一板层的个部分之间温差大的机器,则要求预冻时间长些。为了使箱内每一瓶产品全部冻实,一般要求在样品的温度达到预定的最低温度之后再保持 12 小时的时间。4.冷凝器降温的时间冷凝器要求在预冻末期,预冻尚未结束,抽真空之前开始降温。降温时间要由冷凝器机器的降温性能来决定,要求在预冻结束抽真空的时候,冷凝器的温度要达到-40左右,好的机器一般半小时后开始降温。冷凝器的降温通常从开始之后一直持续到冻干结束为止。温度始终应

28、在-40以下。5.抽真空时间预冻结束就是开始抽真空的时间,要求在半小时左右的时间真空度能达到20Pa。抽真空的同时,也是冻干箱冷凝器之间的真空阀打开的时候,真空泵和真空阀门打开同样一直持续到冻干结束为止。6.预冻结束的时间预冻结束就是当物料被预冻至共熔点温度以下约 2 小时左右(视物料冻干量而定),通常在抽真空及进行程序控温启动之前结束。7.开始加热时间一般认为开始加热的时间(实际上抽真空开始升华即已开始)。开始加热是在真空度达到 10 Pa 之后(接近 110-1 毫米汞柱),开始加热;有些冻干机是在抽真空之后半小时开始进行程序控温,这时真空度已达到 10 Pa 甚至更低。8.产品加热的最高许可温度板层加热的最高许可温度根据产品来决定,在升华时板层的加热温度可以超过产品的最高许可温度因为这时产品仍停留在低温阶段,提高板层温度可促进升华;但冻干后期板层温度需下降到与产品的最高许可温度相一致,由于传热的温差,板层的温度可比产品的最高许可温度略高少许。9.冻干的总时间冻干的总时间为预冻时间,加上升华时间和第二阶段工作的时间。总时间确定,冻干结束时间也确定。这个时间根据产品的品种,瓶子的品种、装箱方式、装量、机器性能等来决定,一般冷冻工作的时间较长,在 1824 小时左右,有些特殊的产品需要几天的时间。

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。